Data-Driven Learning of Total and Local Energies in Elemental Boron

被引:160
作者
Deringer, Volker L. [1 ,2 ]
Pickard, Chris J. [3 ,4 ]
Csanyi, Gabor [1 ]
机构
[1] Univ Cambridge, Engn Lab, Trumpington St, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
[3] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[4] Tohoku Univ, Adv Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
基金
英国工程与自然科学研究理事会;
关键词
BETA-RHOMBOHEDRAL BORON; CRYSTAL; ALLOTROPES; POLYMORPHS; STABILITY; CHEMISTRY;
D O I
10.1103/PhysRevLett.120.156001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated beta-rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.
引用
收藏
页数:5
相关论文
共 45 条
  • [1] Boron: Elementary Challenge for Experimenters and Theoreticians
    Albert, Barbara
    Hillebrecht, Harald
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (46) : 8640 - 8668
  • [2] New Ground-State Crystal Structure of Elemental Boron
    An, Qi
    Reddy, K. Madhav
    Xie, Kelvin Y.
    Hemker, Kevin J.
    Goddard, William A., III
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (08)
  • [3] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [4] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [5] Perspective: Machine learning potentials for atomistic simulations
    Behler, Joerg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
  • [6] ACCURATE REFINEMENT OF BETA-RHOMBOHEDRAL BORON STRUCTURE
    CALLMER, B
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1977, 33 (JUN15): : 1951 - 1954
  • [7] First principles methods using CASTEP
    Clark, SJ
    Segall, MD
    Pickard, CJ
    Hasnip, PJ
    Probert, MJ
    Refson, K
    Payne, MC
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6): : 567 - 570
  • [8] Extracting Crystal Chemistry from Amorphous Carbon Structures
    Deringer, Volker L.
    Csanyi, Gabor
    Proserpio, Davide M.
    [J]. CHEMPHYSCHEM, 2017, 18 (08) : 873 - 877
  • [9] Machine learning based interatomic potential for amorphous carbon
    Deringer, Volker L.
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2017, 95 (09)
  • [10] Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
    Dolgirev, Pavel E.
    Kruglov, Ivan A.
    Oganov, Artem R.
    [J]. AIP ADVANCES, 2016, 6 (08):