Machine learning scheme for fast extraction of chemically interpretable interatomic potentials

被引:47
作者
Dolgirev, Pavel E. [1 ,2 ]
Kruglov, Ivan A. [2 ]
Oganov, Artem R. [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, 3 Nobel St, Moscow 143026, Russia
[2] Moscow Inst Phys & Technol, 9 Inst Per, Dolgoprudnyi 141700, Moscow Region, Russia
来源
AIP ADVANCES | 2016年 / 6卷 / 08期
基金
俄罗斯科学基金会;
关键词
ENERGY SURFACES; CHEMISTRY; PROGRAM; MODELS;
D O I
10.1063/1.4961886
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
引用
收藏
页数:13
相关论文
共 42 条
  • [1] High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
    Artrith, Nongnuch
    Morawietz, Tobias
    Behler, Joerg
    [J]. PHYSICAL REVIEW B, 2011, 83 (15):
  • [2] INTERATOMIC POTENTIALS FOR KRYPTON AND XENON
    BARKER, JA
    WATTS, RO
    LEE, JK
    SCHAFER, TP
    LEE, YT
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1974, 61 (08) : 3081 - 3089
  • [3] Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water
    Bartok, Albert P.
    Gillan, Michael J.
    Manby, Frederick R.
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 88 (05)
  • [4] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [5] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [6] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [7] Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
    Behler, Joerg
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) : 17930 - 17955
  • [8] Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential
    Behler, Joerg
    Martonak, Roman
    Donadio, Davide
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [9] NEURAL-NETWORK MODELS OF POTENTIAL-ENERGY SURFACES
    BLANK, TB
    BROWN, SD
    CALHOUN, AW
    DOREN, DJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (10) : 4129 - 4137
  • [10] Adaptive machine learning framework to accelerate ab initio molecular dynamics
    Botu, Venkatesh
    Ramprasad, Rampi
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) : 1074 - 1083