On the Lambert W function

被引:4664
作者
Corless, RM
Gonnet, GH
Hare, DEG
Jeffrey, DJ
Knuth, DE
机构
[1] UNIV WESTERN ONTARIO,DEPT APPL MATH,LONDON,ON N6A 5B7,CANADA
[2] ETH ZURICH,INST WISSENSCHAFTLICHES RECHNEN,ZURICH,SWITZERLAND
[3] UNIV WATERLOO,SYMBOL COMPUTAT GRP,WATERLOO,ON N2L 3G1,CANADA
[4] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
关键词
D O I
10.1007/BF02124750
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lambert W function is defined to be the multivalued inverse of the function w --> we(w). It has many applications in pure and applied mathematics, some of which are briefly described here. We present a new discussion of the complex branches of W, an asymptotic expansion valid for all branches, an efficient numerical procedure for evaluating the function to arbitrary precision, and a method for the symbolic integration of expressions containing W.
引用
收藏
页码:329 / 359
页数:31
相关论文
共 72 条
[1]   ON THE CONVERGENCE OF HALLEYS METHOD [J].
ALEFELD, G .
AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (07) :530-536
[2]  
*AM NAT STAND I I, 1985, 7541985 ANSI IEEE
[3]  
Anderson JohnD., 1989, INTRO FLIGHT, Vthird
[4]  
[Anonymous], DICT SCI BIOGRAPHY
[5]  
[Anonymous], 1949, P ROYAL SOC EDINBURG
[6]  
[Anonymous], ADV COMBINATORICS
[7]  
[Anonymous], 1963, MANUAL GREEK MATH
[8]  
[Anonymous], HDB ALGORITHMS DATA
[9]  
[Anonymous], 1962, Introduction to Nonlinear and Differential Integral Equations
[10]  
[Anonymous], 1960, MAGYAR TUD AKAD MAT