On the Lambert W function

被引:4664
作者
Corless, RM
Gonnet, GH
Hare, DEG
Jeffrey, DJ
Knuth, DE
机构
[1] UNIV WESTERN ONTARIO,DEPT APPL MATH,LONDON,ON N6A 5B7,CANADA
[2] ETH ZURICH,INST WISSENSCHAFTLICHES RECHNEN,ZURICH,SWITZERLAND
[3] UNIV WATERLOO,SYMBOL COMPUTAT GRP,WATERLOO,ON N2L 3G1,CANADA
[4] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
关键词
D O I
10.1007/BF02124750
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lambert W function is defined to be the multivalued inverse of the function w --> we(w). It has many applications in pure and applied mathematics, some of which are briefly described here. We present a new discussion of the complex branches of W, an asymptotic expansion valid for all branches, an efficient numerical procedure for evaluating the function to arbitrary precision, and a method for the symbolic integration of expressions containing W.
引用
收藏
页码:329 / 359
页数:31
相关论文
共 72 条
[21]  
CHAR BW, 1991, MAPLE V LANGUAGE REF
[22]  
Conte Samuel Daniel, 2017, Elementary Numerical Analysis, An Algorithmic Approach
[23]  
COPPERSMITH D, COMMUNICATION
[24]  
Corless R., 1993, MAPLE TECHNICAL NEWS, V9, P12
[25]  
Corless R. M., 1992, SIGSAM Bulletin, V26, P2, DOI 10.1145/141897.141901
[26]   WHAT GOOD ARE NUMERICAL SIMULATIONS OF CHAOTIC DYNAMICAL-SYSTEMS [J].
CORLESS, RM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (10-12) :107-121
[27]  
CORLESS RM, 1994, ESSENTIAL MAPLE
[28]  
DEBRUIJN NG, 1961, ASYMPTOTIC METHODS A
[29]   A NOTE ON THE HEIGHT OF BINARY SEARCH-TREES [J].
DEVROYE, L .
JOURNAL OF THE ACM, 1986, 33 (03) :489-498
[30]  
Dziobek O., 1917, SITZUNGSBERICHTE BER, V17, P64