Real space renormalization group methods and quantum groups

被引:36
作者
MartinDelgado, MA [1 ]
Sierra, G [1 ]
机构
[1] CSIC,INST MATEMAT & FIS FUNDAMENTAL,E-28006 MADRID,SPAIN
关键词
D O I
10.1103/PhysRevLett.76.1146
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply real space renormalization group (RG) methods to study two quantum group invariant Hamiltonians, that of the XXZ model and the Ising model in a transverse field (ITF) defined in an open chain with appropriate boundary terms. The quantum group symmetry is preserved under the RG transformation except for the appearance of a quantum group anomalous term which vanishes in the classical case. We obtain correctly the line of critical XXZ models. In the ITF model the RG flow coincides with the tensor product decomposition of cyclic irreducible representations of SUq(2) with q(4) = 1.
引用
收藏
页码:1146 / 1149
页数:4
相关论文
共 24 条
[11]   THE QUANTUM SYMMETRY OF RATIONAL CONFORMAL FIELD-THEORIES [J].
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1991, 352 (03) :791-828
[12]   QUANTUM GROUP MEANING OF THE COULOMB GAS [J].
GOMEZ, C ;
SIERRA, G .
PHYSICS LETTERS B, 1990, 240 (1-2) :149-157
[13]  
GOMEZ C, QUANTUM GROUPS 2 DIM
[14]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[15]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[16]   ZERO-TEMPERATURE RENORMALIZATION METHOD FOR QUANTUM SYSTEMS .1. ISING-MODEL IN A TRANSVERSE FIELD IN ONE DIMENSION [J].
JULLIEN, R ;
PFEUTY, P ;
FIELDS, JN ;
DONIACH, S .
PHYSICAL REVIEW B, 1978, 18 (07) :3568-3578
[17]   COMMON STRUCTURES BETWEEN FINITE SYSTEMS AND CONFORMAL FIELD-THEORIES THROUGH QUANTUM GROUPS [J].
PASQUIER, V ;
SALEUR, H .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :523-556
[19]   BOUNDARY-CONDITIONS FOR INTEGRABLE QUANTUM-SYSTEMS [J].
SKLYANIN, EK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (10) :2375-2389
[20]   DENSITY-MATRIX FORMULATION FOR QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2863-2866