Extracting semantically enriched events from biomedical literature

被引:34
作者
Miwa, Makoto [1 ,3 ]
Thompson, Paul [1 ,3 ]
McNaught, John [1 ,3 ]
Kell, Douglas B. [2 ]
Ananiadou, Sophia [1 ,3 ]
机构
[1] Univ Manchester, Manchester Interdisciplinary Bioctr, Natl Ctr Text Min, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Sch Comp Sci, Manchester M1 7DN, Lancs, England
[3] Univ Manchester, Sch Chem, Manchester M1 7DN, Lancs, England
来源
BMC BIOINFORMATICS | 2012年 / 13卷
基金
英国生物技术与生命科学研究理事会;
关键词
INFORMATION EXTRACTION; SCIENTIFIC ARTICLES; CORPUS; TEXT; NEGATION; PROTEIN; CLASSIFICATION; RECOGNITION; DIRECTIONS; ANNOTATION;
D O I
10.1186/1471-2105-13-108
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Results: Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP'09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP'09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. Conclusions: We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e. g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare.
引用
收藏
页数:24
相关论文
共 95 条
[31]   Overview of BioCreAtIvE: critical assessment of information extraction for biology [J].
Hirschman, L ;
Yeh, A ;
Blaschke, C ;
Valencia, A .
BMC BIOINFORMATICS, 2005, 6 (Suppl 1)
[32]   The p53 paradox in the pathogenesis of tumor progression [J].
Holden, RJ ;
Mooney, PA .
MEDICAL HYPOTHESES, 1999, 52 (05) :483-485
[33]  
Jonnalagadda S, 2010, LECT NOTES COMPUT SC, V6008, P224, DOI 10.1007/978-3-642-12116-6_19
[34]   U-Compare: A modular NLP workflow construction and evaluation system [J].
Kano, Y. ;
Miwa, M. ;
Cohen, K. B. ;
Hunter, L. E. ;
Ananiadou, S. ;
Tsujii, J. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2011, 55 (03)
[35]   PathText: a text mining integrator for biological pathway visualizations [J].
Kemper, Brian ;
Matsuzaki, Takuya ;
Matsuoka, Yukiko ;
Tsuruoka, Yoshimasa ;
Kitano, Hiroaki ;
Ananiadou, Sophia ;
Tsujii, Jun'ichi .
BIOINFORMATICS, 2010, 26 (12) :I374-I381
[36]  
Kilicoglu H., 2010, Proceedings of the 14th Conference on Computational Natural Language Learning: Shared Task, P70
[37]  
Kilicoglu H., 2009, P BIONLP 2009 WORKSH, P119
[38]   Recognizing speculative language in biomedical research articles: a linguistically motivated perspective [J].
Kilicoglu, Halil ;
Bergler, Sabine .
BMC BIOINFORMATICS, 2008, 9 (Suppl 11)
[39]  
Kilicoglu Halil., 2011, P BIOM NAT LANG PROC, P173
[40]  
Kim J-D., 2011, P BIONLP SHAR TASK 2, P7, DOI DOI 10.1016/J.0RGEL.2011.04.007