Non-agglomerated dry silica nanoparticles

被引:77
作者
Mueller, R
Kammler, HK
Pratsinis, SE
Vital, A
Beaucage, G
Burtscher, P
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Particle Technol Lab, CH-8092 Zurich, Switzerland
[2] Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland
[3] Univ Cincinnati, Dept Mat Sci & Engn, Cincinnati, OH 45221 USA
[4] Ivoclar Vivadent AG, FL-9494 Schaan, Liechtenstein
基金
美国国家科学基金会;
关键词
nanocomposites; degree of agglomeration; flame aerosol reactor;
D O I
10.1016/j.powtec.2004.01.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Silica nanoparticles for polymer nanocomposites are made by oxidation of hexamethyldisiloxane (HMDSO) in methane/oxygen diffusion flames. The flame temperature is measured by in-situ Fourier transform infrared (FTIR) spectroscopy while the degree of agglomeration of the product powder is quantitatively determined by ultra small angle X-ray scattering (USAXS) and is confirmed by transmission electron microscopy (TEM). Precisely controlled, non-agglomerated silica particles having an average primary particle diameter of 18-85 nm, as determined by N-2 adsorption and TEM, are made at low silica production rates of 9 g/h or at low O-2 flow rates at silica production rates of 17 g/h, while smaller and highly agglomerated particles are made at high O-2 flow rates at silica production rates of 17 g/h. The differences in morphology result from the completion of gas-to-particle conversion and from the onset of steep cooling in the flames that determines the duration of full coalescence. Nanocomposites with dimethylacrylate polymers are made using non-agglomerated silica particles and compared to the ones made with commercially available silicas. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 31 条
[11]   Computational analysis of coagulation and coalescence in the flame synthesis of titania particles [J].
Johannessen, T ;
Pratsinis, SE ;
Livbjerg, H .
POWDER TECHNOLOGY, 2001, 118 (03) :242-250
[12]   Scaling-up the production of nanosized SiO2-particles in a double diffusion flame aerosol reactor [J].
Kammler, Hendrik K. ;
Pratsinis, Sotiris E. .
JOURNAL OF NANOPARTICLE RESEARCH, 1999, 1 (04) :467-477
[13]   Structure of flame-made silica nanoparticles by ultra-small-angle X-ray scattering [J].
Kammler, HK ;
Beaucage, G ;
Mueller, R ;
Pratsinis, SE .
LANGMUIR, 2004, 20 (05) :1915-1921
[14]   Flame, temperature measurements during electrically assisted aerosol synthesis of nanoparticles [J].
Kammler, HK ;
Pratsinis, SE ;
Morrison, PW ;
Hemmerling, B .
COMBUSTION AND FLAME, 2002, 128 (04) :369-381
[15]   Synthesis of silica-carbon particles in a turbulent H2-air flame aerosol reactor [J].
Kammler, HK ;
Mueller, R ;
Senn, O ;
Pratsinis, SE .
AICHE JOURNAL, 2001, 47 (07) :1533-1543
[16]  
KATZ JL, 1994, NANOSTRUCT MATER, V4, P551, DOI 10.1016/0965-9773(94)90063-9
[17]   PARTICLE GROWTH BY COALESCENCE AND AGGLOMERATION [J].
KOCH, W ;
FRIEDLANDER, SK .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1991, 8 (01) :86-89
[18]  
Long GG, 2000, AIP CONF PROC, V521, P183, DOI 10.1063/1.1291782
[19]  
MICHAEL G, 2001, DEGUSSA TECH B PIGME, V11, P24
[20]   In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles [J].
Morrison, PW ;
Raghavan, R ;
Timpone, AJ ;
Artelt, CP ;
Pratsinis, SE .
CHEMISTRY OF MATERIALS, 1997, 9 (12) :2702-2708