Moving lattice kinks and pulses: An inverse method

被引:75
作者
Flach, S
Zolotaryuk, Y
Kladko, K
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Calif Los Alamos Natl Lab, Condensed Matter Phys Grp, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 05期
关键词
D O I
10.1103/PhysRevE.59.6105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a general mapping from given kink or pulse shaped traveling-wave solutions including their velocity to the equations of motion on one-dimensional lattices which support these solutions. We apply this mapping-by definition an inverse method-to acoustic solitons in chains with nonlinear intersite interactions, nonlinear Klein-Gordon chains, reaction-diffusion equations, and discrete nonlinear Schrodinger systems. Potential functions can be found in a unique way provided the pulse shape is reflection symmetric and pulse and kink shapes are at least C-2 functions. For kinks we discuss the relation of our results to the problem of a Peierls-Nabarro potential and continuous symmetries. We then generalize our method to higher dimensional lattices for reaction-diffusion systems. We find that increasing also the number of components easily allows for moving solutions. [S1063-651X(99)14305-8].
引用
收藏
页码:6105 / 6115
页数:11
相关论文
共 22 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[2]   Mobility and reactivity of discrete breathers [J].
Aubry, S ;
Cretegny, T .
PHYSICA D, 1998, 119 (1-2) :34-46
[3]  
BRESSLOFF PC, 1997, PHYSICA D, V106, P225
[4]   Breather mobility in discrete phi(4) nonlinear lattices [J].
Chen, D ;
Aubry, S ;
Tsironis, GP .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4776-4779
[5]   MOVING LOCALIZED MODES IN NONLINEAR LATTICES [J].
CLAUDE, C ;
KIVSHAR, YS ;
KLUTH, O ;
SPATSCHEK, KH .
PHYSICAL REVIEW B, 1993, 47 (21) :14228-14232
[6]   CALCULATION OF FAMILIES OF SOLITARY WAVES ON DISCRETE LATTICES [J].
EILBECK, JC ;
FLESCH, R .
PHYSICS LETTERS A, 1990, 149 (04) :200-202
[7]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[8]   Moving discrete breathers? [J].
Flach, S ;
Kladko, K .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 127 (1-2) :61-72
[9]   MOVABILITY OF LOCALIZED EXCITATIONS IN NONLINEAR DISCRETE-SYSTEMS - A SEPARATRIX PROBLEM [J].
FLACH, S ;
WILLIS, CR .
PHYSICAL REVIEW LETTERS, 1994, 72 (12) :1777-1781
[10]   EXISTENCE THEOREM FOR SOLITARY WAVES ON LATTICES [J].
FRIESECKE, G ;
WATTIS, JAD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (02) :391-418