How to deal with uncertainty in optimization - Some recent attempts

被引:4
作者
Fukushima, Masao [1 ]
机构
[1] Kyoto Univ, Grad Sch & Informot, Dept Appl Math & Phys, Kyoto 6068501, Japan
基金
日本学术振兴会;
关键词
uncertainty; stochastic equilibrium model; robust optimization; second-order cone problem;
D O I
10.1142/S0219622006002192
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we give a brief summary of the author's recent attempts conducted in collaboration with a number of co-authors to deal with uncertainty in various optimization problems, including complementarity problem, mathematical program with equilibrium constraints, as well as applications in data mining, mathematical finance, and game theory.
引用
收藏
页码:623 / 637
页数:15
相关论文
共 27 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[3]   Multicategory classification by support vector machines [J].
Bredensteiner, EJ ;
Bennett, KP .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) :53-79
[4]  
CHEN X, IN PRESS MATH PROGRA
[5]   Expected residual minimization method for stochastic linear complementarity problems [J].
Chen, XJ ;
Fukushima, M .
MATHEMATICS OF OPERATIONS RESEARCH, 2005, 30 (04) :1022-1038
[6]  
Cottle R, 1992, The Linear Complementarity Problem
[7]  
El Ghaoui L, 2003, OPER RES, V51, P543, DOI 10.1287/opre.51.4.543.16101
[8]  
FACCHINEI F, 2003, FINITE DIMENSIONAL V, V1, DOI DOI 10.1007/978-0-387-21815-16
[9]  
Facchinei Francisco., 2003, FINITE DIMENSIONAL V, V2
[10]  
FANG H, 2005, 2005002 KYOT U DEP A