Knot complexity and the probability of random knotting
被引:19
作者:
Shimamura, MK
论文数: 0引用数: 0
h-index: 0
机构:Univ Tokyo, Grad Sch Adv Mat Sci, Bunkyo Ku, Tokyo 1138656, Japan
Shimamura, MK
Deguchi, T
论文数: 0引用数: 0
h-index: 0
机构:Univ Tokyo, Grad Sch Adv Mat Sci, Bunkyo Ku, Tokyo 1138656, Japan
Deguchi, T
机构:
[1] Univ Tokyo, Grad Sch Adv Mat Sci, Bunkyo Ku, Tokyo 1138656, Japan
[2] Ochanomizu Univ, Dept Phys, Bunkyo Ku, Tokyo 1128610, Japan
来源:
PHYSICAL REVIEW E
|
2002年
/
66卷
/
04期
关键词:
D O I:
10.1103/PhysRevE.66.040801
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
The probability of a random polygon (or a ring polymer) having a knot type K should depend on the complexity of the knot K. Through computer simulation using knot invariants, we show that the knotting probability decreases exponentially with respect to knot complexity. Here we assume that some aspects of knot complexity are expressed by the minimal crossing number C and the "rope length" of K, which is defined by the smallest length of rope with unit diameter that can be tied to make the knot K.