Knot complexity and the probability of random knotting

被引:19
作者
Shimamura, MK
Deguchi, T
机构
[1] Univ Tokyo, Grad Sch Adv Mat Sci, Bunkyo Ku, Tokyo 1138656, Japan
[2] Ochanomizu Univ, Dept Phys, Bunkyo Ku, Tokyo 1128610, Japan
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.040801
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The probability of a random polygon (or a ring polymer) having a knot type K should depend on the complexity of the knot K. Through computer simulation using knot invariants, we show that the knotting probability decreases exponentially with respect to knot complexity. Here we assume that some aspects of knot complexity are expressed by the minimal crossing number C and the "rope length" of K, which is defined by the smallest length of rope with unit diameter that can be tied to make the knot K.
引用
收藏
页码:4 / 040801
页数:4
相关论文
共 31 条
[31]  
[No title captured]