Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome

被引:232
作者
Reghunathan, R
Jayapal, M
Hsu, LY
Chng, HH
Tai, D
Leung, BP
Melendez, AJ [1 ]
机构
[1] Natl Univ Singapore, Dept Physiol, Singapore 117548, Singapore
[2] Tan Tock Seng Hosp, Dept Infect Dis, Singapore, Singapore
[3] Tan Tock Seng Hosp, Dept Rheumatol Allergy & Immunol, Singapore, Singapore
[4] Tan Tock Seng Hosp, Dept Gen Med, Singapore, Singapore
关键词
D O I
10.1186/1471-2172-6-2
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Severe acute respiratory syndrome (SARS) emerged in later February 2003, as a new epidemic form of life-threatening infection caused by a novel coronavirus. However, the immune-pathogenesis of SARS is poorly understood. To understand the host response to this pathogen, we investigated the gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from SARS patients, and compared with healthy controls. Results: The number of differentially expressed genes was found to be 186 under stringent filtering criteria of microarray data analysis. Several genes were highly up-regulated in patients with SARS, such as, the genes coding for Lactoferrin, S100A9 and Lipocalin 2. The real-time PCR method verified the results of the gene array analysis and showed that those genes that were up-regulated as determined by microarray analysis were also found to be comparatively up-regulated by real-time PCR analysis. Conclusions: This differential gene expression profiling of PBMCs from patients with SARS strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response, rather than a specific immune response against a viral infection, as we observed a complete lack of cytokine genes usually triggered during a viral infection. Our study shows for the first time how the immune system responds to the SARS infection, and opens new possibilities for designing new diagnostics and treatments for this new life-threatening disease.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   Lactoferrin: A multifunctional glycoprotein involved in the modulation of the inflammatory process [J].
Baveye, S ;
Elass, E ;
Mazurier, J ;
Spik, G ;
Legrand, D .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 1999, 37 (03) :281-286
[3]   Natural killer cells in antiviral defense: Function and regulation by innate cytokines [J].
Biron, CA ;
Nguyen, KB ;
Pien, GC ;
Cousens, LP ;
Salazar-Mather, TP .
ANNUAL REVIEW OF IMMUNOLOGY, 1999, 17 :189-220
[4]   Role of early cytokines, including alpha and beta interferons (IFN-α/β), in innate and adaptive immune responses to viral infections [J].
Biron, CA .
SEMINARS IN IMMUNOLOGY, 1998, 10 (05) :383-390
[5]   Induction of apoptosis by a secreted lipocatin that is transcriptionally regulated by IL-3 deprivation [J].
Devireddy, LR ;
Teodoro, JG ;
Richard, FA ;
Green, MR .
SCIENCE, 2001, 293 (5531) :829-834
[6]   Identification of a novel coronavirus in patients with severe acute respiratory syndrome [J].
Drosten, C ;
Günther, S ;
Preiser, W ;
van der Werf, S ;
Brodt, HR ;
Becker, S ;
Rabenau, H ;
Panning, M ;
Kolesnikova, L ;
Fouchier, RAM ;
Berger, A ;
Burguière, AM ;
Cinatl, J ;
Eickmann, M ;
Escriou, N ;
Grywna, K ;
Kramme, S ;
Manuguerra, JC ;
Müller, S ;
Rickerts, V ;
Stürmer, M ;
Vieth, S ;
Klenk, HD ;
Osterhaus, ADME ;
Schmitz, H ;
Doerr, HW .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (20) :1967-1976
[7]   MOUSE ONCOGENE PROTEIN-24P3 IS A MEMBER OF THE LIPOCALIN PROTEIN FAMILY [J].
FLOWER, DR ;
NORTH, ACT ;
ATTWOOD, TK .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 180 (01) :69-74
[8]  
Frosch M, 2000, ARTHRITIS RHEUM-US, V43, P628, DOI 10.1002/1529-0131(200003)43:3<628::AID-ANR20>3.0.CO
[9]  
2-X
[10]   Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR [J].
Gillim-Ross, L ;
Taylor, J ;
Scholl, DR ;
Ridenour, J ;
Masters, PS ;
Wentworth, DE .
JOURNAL OF CLINICAL MICROBIOLOGY, 2004, 42 (07) :3196-3206