Plasmonic Laser Antennas and Related Devices

被引:101
作者
Cubukcu, Ertugrul [1 ]
Yu, Nanfang [1 ]
Smythe, Elizabeth J. [1 ]
Diehl, Laurent [1 ]
Crozier, Kenneth B. [1 ]
Capasso, Federico [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Gold nanoparticles; near-field optics; surface-enhanced Raman spectroscopy (SERS); surface plasmons (SPs);
D O I
10.1109/JSTQE.2007.912747
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reviews recent work on device applications of optical antennas. Localized surface plasmon resonances of gold nanorod antennas resting on a silica glass substrate were modeled by finite difference time-domain simulations. A single gold nanorod of length 150 or 550 nm resonantly generates enhanced near fields when illuminated with light of 830 nm wavelength. A pair of these nanorods gives higher field enhancements due to capacitive coupling between them. Bowtie antennas that consist of a pair of triangular gold particles offer the best near-field confinement and enhancement. Plasmonic laser antennas based on the coupled nanorod antenna design were fabricated by focused ion beam lithography on the facet of a semiconductor laser diode operating at a wavelength of 830 nm. An optical spot size of few tens of nanometers was measured by apertureless near-field optical microscope. We have extended our work on plasmonic antenna into mid-infrared (mid-IR) wavelengths by implementing resonant nanorod and bowtie antennas on the facets of various quantum cascade lasers. Experiments show that this mid-IR device can provide an optical intensity confinement 70 times higher than that would be achieved with diffraction limited optics. Near-field intensities similar to 1 GW / cm(2) were estimated for both near-infrared and mid-IR plasmonic antennas. A fiber device that takes advantage of plasmonic resonances of gold nanorod arrays providing a high density of optical "hot spots" is proposed. Results of a systematic theoretical and experimental study of the reflection spectra of these arrays fabricated on a silica glass substrate are also presented. The family of these proof-of-concept plasmonic devices that we present here can be potentially useful in many applications including near-field optical microscopes, high-density optical data storage, surface enhanced Raman spectroscopy, heat-assisted magnetic recording, and spatially resolved absorption spectroscopy.
引用
收藏
页码:1448 / 1461
页数:14
相关论文
共 109 条
[71]   Plasmonics: Merging photonics and electronics at nanoscale dimensions [J].
Ozbay, E .
SCIENCE, 2006, 311 (5758) :189-193
[72]   Negative refractive index metamaterials [J].
Padilla, Willie J. ;
Basov, Dimitri N. ;
Smith, David R. .
MATERIALS TODAY, 2006, 9 (7-8) :28-35
[73]  
Palik ED, 1985, HDB OPTICAL CONSTANT, VI, DOI DOI 10.1016/B978-012544415-6.500002-9
[74]   High-power laser light source for near-field optics and its application to high-density optical data storage [J].
Partovi, A ;
Peale, D ;
Wuttig, M ;
Murray, CA ;
Zydzik, G ;
Hopkins, L ;
Baldwin, K ;
Hobson, WS ;
Wynn, J ;
Lopata, J ;
Dhar, L ;
Chichester, R ;
Yeh, JHJ .
APPLIED PHYSICS LETTERS, 1999, 75 (11) :1515-1517
[75]   Extremely low frequency plasmons in metallic mesostructures [J].
Pendry, JB ;
Holden, AJ ;
Stewart, WJ ;
Youngs, I .
PHYSICAL REVIEW LETTERS, 1996, 76 (25) :4773-4776
[76]   Negative refraction makes a perfect lens [J].
Pendry, JB .
PHYSICAL REVIEW LETTERS, 2000, 85 (18) :3966-3969
[77]   Mimicking surface plasmons with structured surfaces [J].
Pendry, JB ;
Martín-Moreno, L ;
Garcia-Vidal, FJ .
SCIENCE, 2004, 305 (5685) :847-848
[78]   GUIDED OPTICAL WAVES IN PLANAR HETEROSTRUCTURES WITH NEGATIVE DIELECTRIC-CONSTANT [J].
PRADE, B ;
VINET, JY ;
MYSYROWICZ, A .
PHYSICAL REVIEW B, 1991, 44 (24) :13556-13572
[79]   Electromagnetic energy transport via linear chains of silver nanoparticles [J].
Quinten, M ;
Leitner, A ;
Krenn, JR ;
Aussenegg, FR .
OPTICS LETTERS, 1998, 23 (17) :1331-1333
[80]  
RAETHER H, 1988, SURFACE PLASMONS SMO, pCH2