Exocrine ontogenies: On the development of pancreatic acinar, ductal and centroacinar cells

被引:57
作者
Cleveland, Megan H. [1 ,2 ]
Sawyer, Jacob M. [1 ]
Afelik, Solomon
Jensen, Jan
Leach, Steven D. [1 ]
机构
[1] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD 21205 USA
[2] Cleveland Clin, Lerner Res Inst, Predoctoral Training Program Human Genet, Cleveland, OH 44106 USA
关键词
Acinar; Ductal; Centroacinar; Notch; REGENERATING RAT PANCREAS; PROGENITOR CELLS; BETA-CELL; ENDOCRINE-CELLS; BRANCHING MORPHOGENESIS; SIGNALING MAINTAINS; LINEAGE SELECTION; PROTEIN-SYNTHESIS; MOUSE PANCREAS; ADULT PANCREAS;
D O I
10.1016/j.semcdb.2012.06.008
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central "trunk" domain giving rise to the islet and ductal lineages, or a peripheral "tip" domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:711 / 719
页数:9
相关论文
共 112 条
[11]   The pancreatic ductal epithelium serves as a potential pool of progenitor cells [J].
Bonner-Weir, S ;
Toschi, E ;
Inada, A ;
Reitz, P ;
Fonseca, SY ;
Aye, T ;
Sharma, A .
PEDIATRIC DIABETES, 2004, 5 :16-22
[12]   Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas [J].
Bottinger, EP ;
Jakubczak, JL ;
Roberts, ISD ;
Mumy, M ;
Hemmati, P ;
Bagnall, K ;
Merlino, G ;
Wakefield, LM .
EMBO JOURNAL, 1997, 16 (10) :2621-2633
[13]   Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas [J].
Burghardt, B ;
Elkjær, ML ;
Kwon, TH ;
Rácz, GZ ;
Varga, G ;
Steward, MC ;
Nielsen, S .
GUT, 2003, 52 (07) :1008-1016
[14]   Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells [J].
Burlison, Jared S. ;
Long, Qiaoming ;
Fujitani, Yoshio ;
Wright, Christopher V. E. ;
Magnuson, Mark A. .
DEVELOPMENTAL BIOLOGY, 2008, 316 (01) :74-86
[15]   Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype [J].
Chera, S ;
de Rosa, R ;
Miljkovic-Licina, M ;
Dobretz, K ;
Ghila, L ;
Kaloulis, K ;
Galliot, B .
JOURNAL OF CELL SCIENCE, 2006, 119 (05) :846-857
[16]   Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro -: A balance between proliferation and differentiation [J].
Cras-Méneur, C ;
Elghazi, L ;
Czernichow, P ;
Scharfmann, R .
DIABETES, 2001, 50 (07) :1571-1579
[17]   Expression and role of laminin-1 in mouse pancreatic organogenesis [J].
Crisera, CA ;
Kadison, AS ;
Breslow, GD ;
Maldonado, TS ;
Longaker, MIT ;
Gittes, GK .
DIABETES, 2000, 49 (06) :936-944
[18]   Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas [J].
Esni, F ;
Ghosh, B ;
Biankin, AV ;
Lin, JW ;
Albert, MA ;
Yu, XB ;
MacDonald, RJ ;
Civin, CI ;
Real, FX ;
Pack, MA ;
Ball, DW ;
Leach, SD .
DEVELOPMENT, 2004, 131 (17) :4213-4224
[19]  
Fishman MP, 2002, INT J DEV BIOL, V46, P201
[20]   Notch/Rbp-j signaling prevents premature endocrine and ductal cell differentiation in the pancreas [J].
Fujikura, J ;
Hosoda, K ;
Iwakura, H ;
Tomita, T ;
Noguchi, M ;
Masuzaki, H ;
Tanigaki, K ;
Yabe, D ;
Honjo, T ;
Nakao, K .
CELL METABOLISM, 2006, 3 (01) :59-65