Ponzano-Regge model revisited: III. Feynman diagrams and effective field theory

被引:171
作者
Freidel, Laurent
Livine, Etera R.
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada
[2] Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon, France
关键词
D O I
10.1088/0264-9381/23/6/012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the no-gravity limit G(N) -> 0 of the Ponzano-Regge amplitudes with massive particles and show that we recover in this limit Feynman graph amplitudes (with the Hadamard propagator) expressed as an Abelian spin foam model. We show how the GN expansion of the Ponzano-Regge amplitudes can be resummed. This leads to the conclusion that the effective dynamics of quantum particles coupled to quantum 3D gravity can be expressed in terms of an effective new non-commutative field theory which respects the principles of doubly special relativity. We discuss the construction of Lorentzian spin foam models including Feymnan propagators.
引用
收藏
页码:2021 / 2061
页数:41
相关论文
共 47 条
[1]   Expansion in Feynman graphs as simplicial string theory [J].
Akhmedov, ET .
JETP LETTERS, 2004, 80 (04) :218-225
[2]  
AKHMEDOV ET, 2004, PIS ZH EKSP TEOR FIZ, V80, P247
[3]   General properties of non-commutative field theories [J].
Alvarez-Gaumé, L ;
Vázquez-Mozo, MA .
NUCLEAR PHYSICS B, 2003, 668 (1-2) :293-321
[4]   Relativity - Special treatment [J].
Amelino-Camelia, G .
NATURE, 2002, 418 (6893) :34-35
[5]   Doubly-special relativity: First results and key open problems [J].
Amelino-Camelia, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2002, 11 (10) :1643-1669
[6]  
[Anonymous], 1995, QUANTUM FIELD THEORY
[7]  
[Anonymous], HEPTH0303185
[8]   Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity [J].
Bais, FA ;
Muller, NM ;
Schroers, BJ .
NUCLEAR PHYSICS B, 2002, 640 (1-2) :3-45
[9]   Relativistic spin networks and quantum gravity [J].
Barrett, JW ;
Crane, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3296-3302
[10]   A Lorentzian signature model for quantum general relativity [J].
Barrett, JW ;
Crane, L .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (16) :3101-3118