Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity

被引:62
作者
Bais, FA
Muller, NM
Schroers, BJ
机构
[1] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S0550-3213(02)00572-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Starting with the Chern-Simons formulation of (2 + 1)-dimensional gravity we show that the gravitational interactions deform the Poincare symmetry of flat spacetime to a quantum group symmetry. The relevant quantum group is the quantum double of the universal cover of the (2 + 1) dimensional Lorentz group, or Lorentz double for short. We construct the Hilbert space of two gravitating particles and use the universal R-matrix of the Lorentz double to derive a general expression for the scattering cross section of gravitating particles with spin. In appropriate limits our formula reproduces the semi-classical scattering formulae found by 't Hooft, Deser, Jackiw and de Sousa Gerbert. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3 / 45
页数:43
相关论文
共 44 条
[1]   COMBINATORIAL QUANTIZATION OF THE HAMILTONIAN CHERN-SIMONS THEORY .1. [J].
ALEKSEEV, AY ;
GROSSE, H ;
SCHOMERUS, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (02) :317-358
[2]   Representation theory of Chern-Simons observables [J].
Alekseev, AY ;
Schomerus, V .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (02) :447-510
[3]  
ATIYAH M, 1990, GEOMETRY PHYSICS KNO
[4]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[5]   Topological field theory and the quantum double of SU(2) [J].
Bais, FA ;
Muller, NM .
NUCLEAR PHYSICS B, 1998, 530 (1-2) :349-400
[6]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[7]  
BARUT AO, 1986, THEORY GROUP REPRESE
[8]   Harmonic analysis on the Quantum Lorentz Group [J].
Buffenoir, E ;
Roche, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (03) :499-555
[9]  
BUFFENOIR E, HEPTH0202121
[10]   CLASSICAL SCATTERING IN 2 + 1 GRAVITY WITH N-SPINNING SOURCES [J].
CAPPELLI, A ;
CIAFALONI, M ;
VALTANCOLI, P .
PHYSICS LETTERS B, 1991, 273 (04) :431-437