Analysis of MADS box protein-protein interactions in living plant cells

被引:183
作者
Immink, RGH
Gadella, TWJ
Ferrario, S
Busscher, M
Angenent, GC
机构
[1] Plant Res Int, NL-6700 AA Wageningen, Netherlands
[2] Univ Amsterdam, Swammerdam Inst Life Sci, Sect Mol Cytol, NL-1098 SM Amsterdam, Netherlands
关键词
D O I
10.1073/pnas.042677699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the last decade, the yeast two-hybrid system has become the tool to use for the identification of protein-protein interactions and recently, even complete interactomes were elucidated by this method. Nevertheless, it is an artificial system that is sensitive to errors resulting in the identification of false-positive and false-negative interactions. In this study, plant MADS box transcription factor interactions identified by yeast two-hybrid systems where studied in living plant cells by a technique based on fluorescence resonance energytransfer (FRET). Petunia MADS box proteins were fused to either cyan fluorescent protein or yellow fluorescent protein and transiently expressed in protoplasts followed by FRET-spectral imaging microscopy and FRET-fluorescence lifetime imaging microscopy to detect FRET and hence protein-protein interactions. All petunia MADS box heterodimers identified in yeast were confirmed in protoplasts. However, in contrast to the yeast two-hybrid results, homodimerization was demonstrated in plant cells for three petunia MADS box proteins. Heterodimers were identified between the ovule-specific MADS box protein FLORAL BINDING PROTEIN 11 and members of the petunia FLORAL BINDING PROTEIN 2 subfamily, which are also expressed in ovules, suggesting that these dimers play a role in ovule development. Furthermore, the role of dimerization in translocation of MADS box protein dimers to the nucleus is demonstrated, and the nuclear localization signal of MADS box proteins has been mapped to the N-terminal region of the MADS domain by means of mutant analyses.
引用
收藏
页码:2416 / 2421
页数:6
相关论文
共 33 条
[1]   A NOVEL CLASS OF MADS BOX GENES IS INVOLVED IN OVULE DEVELOPMENT IN PETUNIA [J].
ANGENENT, GC ;
FRANKEN, J ;
BUSSCHER, M ;
VANDIJKEN, A ;
VANWENT, JL ;
DONS, HJM ;
VANTUNEN, AJ .
PLANT CELL, 1995, 7 (10) :1569-1582
[2]   DIFFERENTIAL EXPRESSION OF 2 MADS BOX GENES IN WILD-TYPE AND MUTANT PETUNIA FLOWERS [J].
ANGENENT, GC ;
BUSSCHER, M ;
FRANKEN, J ;
MOL, JNM ;
VANTUNEN, AJ .
PLANT CELL, 1992, 4 (08) :983-993
[3]   CO-SUPPRESSION OF THE PETUNIA HOMEOTIC GENE FBP2 AFFECTS THE IDENTITY OF THE GENERATIVE MERISTEM [J].
ANGENENT, GC ;
FRANKEN, J ;
BUSSCHER, M ;
WEISS, D ;
VANTUNEN, AJ .
PLANT JOURNAL, 1994, 5 (01) :33-44
[4]   Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions [J].
Aronheim, A ;
Zandi, E ;
Hennemann, H ;
Elledge, SJ ;
Karin, M .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (06) :3094-3102
[5]   NUCLEAR-LOCALIZATION OF THE PETUNIA MADS BOX PROTEIN FBP1 [J].
CANAS, LA ;
BUSSCHER, M ;
ANGENENT, GC ;
BELTRAN, JP ;
VANTUNEN, AJ .
PLANT JOURNAL, 1994, 6 (04) :597-604
[6]   Nuclear translocation of Fos is stimulated by interaction with Jun through the leucine zipper [J].
Chida, K ;
Nagamori, S ;
Kuroki, T .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (02) :297-302
[7]   THE PETUNIA MADS BOX GENE FBP11 DETERMINES OVULE IDENTITY [J].
COLOMBO, L ;
FRANKEN, J ;
KOETJE, E ;
VANWENT, J ;
DONS, HJM ;
ANGENENT, GC ;
VANTUNEN, AJ .
PLANT CELL, 1995, 7 (11) :1859-1868
[8]   Multiple interactions amongst floral homeotic MADS box proteins [J].
Davies, B ;
EgeaCortines, M ;
Silva, ED ;
Saedler, H ;
Sommer, H .
EMBO JOURNAL, 1996, 15 (16) :4330-4343
[9]  
DENECKE J, 1989, Methods in Molecular and Cellular Biology, V1, P19
[10]   NUCLEAR TARGETING SEQUENCES - A CONSENSUS [J].
DINGWALL, C ;
LASKEY, RA .
TRENDS IN BIOCHEMICAL SCIENCES, 1991, 16 (12) :478-481