Plant P450s as versatile drivers for evolution of species-specific chemical diversity

被引:238
作者
Hamberger, Bjorn [1 ,2 ]
Bak, Soren [1 ]
机构
[1] Univ Copenhagen, Plant Biochem Lab, Dept Plant & Environm Sci, DK-1871 Copenhagen C, Denmark
[2] Novo Nordisk Fdn Ctr Biosustainabil, Sect Plant Pathway Discovery, DK-1871 Copenhagen C, Denmark
关键词
evolution of diversity; general and specialized metabolism; cyanogenic glucosides; glucosinolates; terpenoids; phenylpropanoids and phenolics; AVOCADO PERSEA-AMERICANA; 14; ALPHA-DEMETHYLASE; CYTOCHROME-P450; GENES; MEDICAGO-TRUNCATULA; LOTUS-JAPONICUS; BETA-AMYRIN; FUNCTIONAL-CHARACTERIZATION; BENZOXAZINOID BIOSYNTHESIS; GINSENOSIDE BIOSYNTHESIS; CYANOGENIC GLUCOSIDES;
D O I
10.1098/rstb.2012.0426
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids.
引用
收藏
页数:16
相关论文
共 110 条
[1]   Polyploidy and genome evolution in plants [J].
Adams, KL ;
Wendel, JF .
CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (02) :135-141
[2]   Identification of a cytochrome P450 cDNA encoding (2S)-flavanone 2-hydroxylase of licorice (Glycyrrhiza echinata L.; Fabaceae) which represents licodione synthase and flavone synthase II [J].
Akashi, T ;
Aoki, T ;
Ayabe, S .
FEBS LETTERS, 1998, 431 (02) :287-290
[3]   Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor [J].
Bak, S ;
Olsen, CE ;
Petersen, BL ;
Moller, BL ;
Halkier, BA .
PLANT JOURNAL, 1999, 20 (06) :663-671
[4]   The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates [J].
Bak, S ;
Nielsen, HL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 38 (05) :725-734
[5]   Cloning and expression in Escherichia coli of the obtusifoliol 14 alpha-demethylase of Sorghum bicolor (L) Moench, a cytochrome P450 orthologous to the sterol 14 alpha-demethylases (CYP51) from fungi and mammals [J].
Bak, S ;
Kahn, RA ;
Olsen, CE ;
Halkier, BA .
PLANT JOURNAL, 1997, 11 (02) :191-201
[6]   Cyanogenic glycosides: A case study for evolution and application of cytochromes P450 [J].
Bak S. ;
Paquette S.M. ;
Morant M. ;
Morant A.V. ;
Saito S. ;
Bjarnholt N. ;
Zagrobelny M. ;
Jørgensen K. ;
Osmani S. ;
Simonsen H.T. ;
Pérez R.S. ;
Van Heeswijck T.B. ;
Jørgensen B. ;
Møller B.L. .
Phytochemistry Reviews, 2006, 5 (2-3) :309-329
[7]  
Bak Soren, 2011, Arabidopsis Book, V9, pe0144, DOI 10.1199/tab.0144
[8]   Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis [J].
Bancos, S ;
Nomura, T ;
Sato, T ;
Molnár, G ;
Bishop, GJ ;
Koncz, C ;
Yokota, T ;
Nagy, F ;
Szekeres, M .
PLANT PHYSIOLOGY, 2002, 130 (01) :504-513
[9]   Hydroxynitrile glucosides [J].
Bjarnholt, Nanna ;
Moller, Birger Lindberg .
PHYTOCHEMISTRY, 2008, 69 (10) :1947-1961
[10]   SEQUENCE-ANALYSIS OF RIPENING-RELATED CYTOCHROME-P-450 CDNAS FROM AVOCADO FRUIT [J].
BOZAK, KR ;
YU, H ;
SIREVAG, R ;
CHRISTOFFERSEN, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (10) :3904-3908