Generalized quasi-variational inequalities without continuities

被引:17
作者
Cubiotti, P
机构
[1] Department of Mathematics, University of Messina, Messina
关键词
generalized quasi-variational inequalities; upper semicontinuous multifunctions; lower semicontinuous multifunctions; fixed points;
D O I
10.1023/A:1022699205336
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a nonempty set X subset of or equal to R(n) and two multifunctions beta:X --> 2(X), phi:X --> 2(Rn), we consider the following generalized quasivariational inequality problem associated with X, beta, phi: Find ((x) over bar, (z) over bar) is an element of X x R(n) such that (x) over bar is an element of beta ((x) over bar), (z) over bar is an element of phi ((x) over bar), and sup(y is an element of beta((x) over bar)) [(z) over bar, (x) over bar - y] less than or equal to 0. We prove several existence results in which the multifunction phi is not supposed to have any continuity property. Among others, we extend the results obtained in Ref. 1 for the case beta(x) = X.
引用
收藏
页码:477 / 495
页数:19
相关论文
共 30 条
[1]  
Aubin J.-P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[2]  
Aubin J.-P., 1993, OPTIMA EQUILIBRIA
[3]   FIXED POINT THEORY OF MULTI-VALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :283-&
[4]   THE GENERALIZED QUASI-VARIATIONAL INEQUALITY PROBLEM [J].
CHAN, D ;
PANG, JS .
MATHEMATICS OF OPERATIONS RESEARCH, 1982, 7 (02) :211-222
[5]   FINITE-DIMENSIONAL QUASI-VARIATIONAL INEQUALITIES ASSOCIATED WITH DISCONTINUOUS FUNCTIONS [J].
CUBIOTTI, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 72 (03) :577-582
[6]  
DEIMLING K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]  
DING XP, 1990, J MATH ANAL APPL, V148, P497
[8]  
Eaves B., 1971, Math. Program, V1, P68, DOI [10.1007/BF01584073, DOI 10.1007/BF01584073]
[10]   GENERALIZED VARIATIONAL-INEQUALITIES [J].
FANG, SC ;
PETERSON, EL .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 38 (03) :363-383