Evolution of Snake Venom Disintegrins by Positive Darwinian Selection

被引:124
作者
Juarez, Paula [1 ]
Comas, Inaki [2 ]
Gonzalez-Candelas, Fernando [2 ]
Calvete, Juan J. [1 ]
机构
[1] CSIC, Inst Biomed Valencia, Valencia, Spain
[2] Univ Valencia, Inst Cavanilles Biodiversidad Biol Evolut, Valencia, Spain
关键词
molecular evolution; snake venom disintegrins; adaptive evolution; positive Darwinian selection; phylogeny;
D O I
10.1093/molbev/msn179
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PII-disintegrins, cysteine-rich polypeptides broadly distributed in the venoms of geographically diverse species of vipers and rattlesnakes, antagonize the adhesive functions of beta(1) and beta(3) integrin receptors. PII-disintegrins evolved in Viperidae by neofunctionalization of disintegrin-like domains of duplicated PIII-snake venom hemorrhagic metalloproteinase (SVMP) genes recruited into the venom proteome before the radiation of the advanced snakes. Minimization of the gene (loss of introns and coding regions) and the protein structures (successive loss of disulfide bonds) underpins the postduplication divergence of disintegrins. However, little is known about the underlying genetic mechanisms that have generated the structural and functional diversity among disintegrins. Phylogenetic inference and maximum likelihood-based codon substitution approaches were used to analyze the evolution of the disintegrin family. The topology of the phylogenetic tree does not parallel that of the species tree. This incongruence is consistent with that expected for a multigene family undergoing a birth-and-death process in which the appearance and disappearance of loci are being driven by selection. Cysteine and buried residues appear to be under strong purifying selection due to their role in maintaining the active conformation of disintegrins. Divergence of disintegrins is strongly influenced by positive Darwinian selection causing accelerated rate of substitution in a substantial proportion of surface-exposed disintegrin residues. Global and lineage-specific sites evolving under diversifying selection were identified. Several sites are located within the integrin-binding loop and the C-terminal tail, two regions that form a conformational functional epitope. Arginine-glycine-aspartic acid (RGD) was inferred to represent the ancestral integrin-recognition motif, which emerged from the subgroup of PIII-SVMPs bearing the RDECD sequence. The most parsimonious nucleotide substitution model required for the emergence of all known disintegrin's integrin inhibitory motifs from an ancestral RGD sequence involves a minimum of three mutations. The adaptive advantage of the emergence of motifs targeting beta(1) integrins and the role of positively selected sites located within nonfunctional disintegrin regions appear to be difficult to rationalize in the context of a predator-prey arms race. Perhaps, this represents a consequence of the neofunctionalization potential of the disintegrin domain, a feature that may underlie its recruitment into the venom proteome followed by its successful transformation into a toxin.
引用
收藏
页码:2391 / 2407
页数:17
相关论文
共 81 条
[51]   Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of alpha IIb beta 3 and alpha v beta 3 integrins [J].
McLane, MA ;
VijayKumar, S ;
Marcinkiewicz, C ;
Calvete, JJ ;
Niewiarowski, S .
FEBS LETTERS, 1996, 391 (1-2) :139-143
[52]  
Menez A, 2002, PERSPECTIVES MOL TOX
[53]   Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR [J].
Monleón, D ;
Esteve, V ;
Kovacs, H ;
Calvete, JJ ;
Celda, B .
BIOCHEMICAL JOURNAL, 2005, 387 :57-66
[54]   Concerted motions of the integrin-binding loop and the C-terminal tail of the non-RGD disintegrin obtustatin [J].
Monleón, D ;
Moreno-Murciano, MP ;
Kovacs, H ;
Marcinkiewicz, C ;
Calvete, JJ ;
Celda, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (46) :45570-45576
[55]   Evolution of Disintegrin Cysteine-rich and mammalian Matrix-degrading Metalloproteinases: Gene duplication and divergence of a common ancestor rather than convergent evolution [J].
MouradaSilva, AM ;
Theakston, RDG ;
Crampton, JM .
JOURNAL OF MOLECULAR EVOLUTION, 1996, 43 (03) :263-269
[56]   Concerted and birth-and-death evolution of multigene families [J].
Nei, M ;
Rooney, AP .
ANNUAL REVIEW OF GENETICS, 2005, 39 :121-152
[57]   Selectionism and neutralism in molecular evolution [J].
Nei, M .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (12) :2318-2342
[58]   Evolution by the birth-and-death process in multigene families of the vertebrate immune system [J].
Nei, M ;
Gu, X ;
Sitnikova, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (15) :7799-7806
[59]  
Niewiarowski S, 2002, PERSPECTIVES IN MOLECULAR TOXINOLOGY, P327
[60]  
NIEWIAROWSKI S, 1994, SEMIN HEMATOL, V31, P289