Scaling of self-avoiding walks and self-avoiding trails in three dimensions

被引:45
作者
Prellberg, T [1 ]
机构
[1] Tech Univ Clausthal, Inst Theoret Phys, D-38678 Clausthal Zellerfeld, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 43期
关键词
D O I
10.1088/0305-4470/34/43/102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by recent claims of a proof that the length scale exponent for the end-to-end distance scaling of self-avoiding walks is precisely 7/12 = 0.5833..., we present results of large-scale simulations of self-avoiding walks and self-avoiding trails with repulsive contact interactions on the simple cubic lattice. We find no evidence to support this claim; our estimate v = 0.5874(2) is in accord with the best previous results from simulations.
引用
收藏
页码:L599 / L602
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 1990, POLYM SOLUTION
[2]  
BELOHOREC P, 1997, PREPRINT
[3]   Pruned-enriched Rosenbluth method: Simulations of theta polymers of chain length up to 1,000,000 [J].
Grassberger, P .
PHYSICAL REVIEW E, 1997, 56 (03) :3682-3693
[4]   Universality class of trails in two dimensions [J].
Guim, I ;
Blote, HWJ ;
Burkhardt, TW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02) :413-421
[5]   LATTICE TRAILS .1. EXACT RESULTS [J].
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (04) :567-573
[6]   LATTICE TRAILS .2. NUMERICAL RESULTS [J].
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (04) :575-588
[7]  
HUETER I, 2001, MATHPR0108077 ARXIV
[8]  
HUETER I, 2001, MATHPR0108120 ARXIV
[9]   CRITICAL EXPONENTS, HYPERSCALING, AND UNIVERSAL AMPLITUDE RATIOS FOR 2-DIMENSIONAL AND 3-DIMENSIONAL SELF-AVOIDING WALKS [J].
LI, B ;
MADRAS, N ;
SOKAL, AD .
JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (3-4) :661-754
[10]  
Madras N., 1993, SELF AVOIDING WALK