Three-dimensional microfluidic devices fabricated in layered paper and tape

被引:959
作者
Martinez, Andres W. [1 ]
Phillips, Scott T. [1 ]
Whitesides, George M. [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
diagnostics; patterned paper;
D O I
10.1073/pnas.0810903105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article describes a method for fabricating 3D microfluidic devices by stacking layers of patterned paper and double-sided adhesive tape. Paper-based 3D microfluidic devices have capabilities in microfluidics that are difficult to achieve using conventional open-channel microsystems made from glass or polymers. In particular, 3D paper-based devices wick fluids and distribute microliter volumes of samples from single inlet points into arrays of detection zones (with numbers up to thousands). This capability makes it possible to carry out a range of new analytical protocols simply and inexpensively (all on a piece of paper) without external pumps. We demonstrate a prototype 3D device that tests 4 different samples for up to 4 different analytes and displays the results of the assays in a side-by-side configuration for easy comparison. Three-dimensional paper-based microfluidic devices are especially appropriate for use in distributed healthcare in the developing world and in environmental monitoring and water analysis.
引用
收藏
页码:19606 / 19611
页数:6
相关论文
共 19 条
  • [1] Bartholomeusz DA, 2005, J MICROELECTROMECH S, V14, P1364, DOI 10.1109/JMEMS.2005.859087
  • [2] A simple artificial urine for the growth of urinary pathogens
    Brooks, T
    Keevil, CW
    [J]. LETTERS IN APPLIED MICROBIOLOGY, 1997, 24 (03) : 203 - 206
  • [3] Lab-on-a-chip devices for global health: Past studies and future opportunities
    Chin, Curtis D.
    Linder, Vincent
    Sia, Samuel K.
    [J]. LAB ON A CHIP, 2007, 7 (01) : 41 - 57
  • [4] Top ten biotechnologies for improving health in developing countries
    Daar, AS
    Thorsteinsdóttir, H
    Martin, DK
    Smith, AC
    Nast, S
    Singer, PA
    [J]. NATURE GENETICS, 2002, 32 (02) : 229 - 232
  • [5] Microfluidic vias enable nested bioarrays and autoregulatory devices in Newtonian fluids
    Kartalov, Emil P.
    Walker, Christopher
    Taylor, Clive R.
    Anderson, W. French
    Scherer, Axel
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (33) : 12280 - 12284
  • [6] Perforated membrane method for fabricating three-dimensional polydimethylsiloxane microfluidic devices
    Luo, Yiqi
    Zare, Richard N.
    [J]. LAB ON A CHIP, 2008, 8 (10) : 1688 - 1694
  • [7] Diagnostics for the developing world
    Mabey, D
    Peeling, RW
    Ustianowski, A
    Perkins, MD
    [J]. NATURE REVIEWS MICROBIOLOGY, 2004, 2 (03) : 231 - 240
  • [8] Macek K., 1971, CHROMATOGR REV, V15, P1, DOI 10.1016/0009-5907(71)80007-8
  • [9] Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis
    Martinez, Andres W.
    Phillips, Scott T.
    Carrilho, Emanuel
    Thomas, Samuel W., III
    Sindi, Hayat
    Whitesides, George M.
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (10) : 3699 - 3707
  • [10] Patterned paper as a platform for inexpensive, low-volume, portable bioassays
    Martinez, Andres W.
    Phillips, Scott T.
    Butte, Manish J.
    Whitesides, George M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (08) : 1318 - 1320