Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide

被引:189
作者
Xia, TA
Li, Q
Liu, XD
Meng, JA
Cao, XQ [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Key Lab Rare Earth Chem & Phys, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
关键词
D O I
10.1021/jp055945n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)(2), La(NO3)(3), etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of HI and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV-vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67-79 m(2)g(-1). XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV-vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder. Interestingly, molybdenum trioxide nanobelts exhibit a red shift under this condition.
引用
收藏
页码:2006 / 2012
页数:7
相关论文
共 71 条
[1]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[2]  
Antonelli DM, 1999, ANGEW CHEM INT EDIT, V38, P1471, DOI 10.1002/(SICI)1521-3773(19990517)38:10<1471::AID-ANIE1471>3.0.CO
[3]  
2-R
[4]   Carbon monoxide response of molybdenum oxide thin films deposited by different techniques [J].
Comini, E ;
Faglia, G ;
Sberveglieri, G ;
Cantalini, C ;
Passacantando, M ;
Santucci, S ;
Li, Y ;
Wlodarski, W ;
Qu, W .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 68 (1-3) :168-174
[5]   SYNTHESIS AND CHARACTERIZATION OF CARBIDE NANORODS [J].
DAI, HJ ;
WONG, EW ;
LU, YZ ;
FAN, SS ;
LIEBER, CM .
NATURE, 1995, 375 (6534) :769-772
[6]   Growth and optical characterization of Ga2O3 nanobelts and nanosheets [J].
Dai, L ;
Chen, XL ;
Zhang, XN ;
Jin, AZ ;
Zhou, T ;
Hu, BQ ;
Zhang, Z .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (02) :1062-1064
[7]   Tin oxide nanowires, nanoribbons, and nanotubes [J].
Dai, ZR ;
Gole, JL ;
Stout, JD ;
Wang, ZL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (06) :1274-1279
[8]   Gallium oxide nanoribbons and nanosheets [J].
Dai, ZR ;
Pan, ZW ;
Wang, ZL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (05) :902-904
[9]   Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns [J].
Dloczik, L ;
Engelhardt, R ;
Ernst, K ;
Fiechter, S ;
Sieber, I ;
Könenkamp, R .
APPLIED PHYSICS LETTERS, 2001, 78 (23) :3687-3689
[10]   Sol-gel synthesis of monolithic molybdenum oxide aerogels and xerogels [J].
Dong, W ;
Dunn, B .
JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (03) :665-670