Multivariate non-linear fuzzy regression: An evolutionary algorithm approach

被引:15
作者
Buckley, JJ [1 ]
Feuring, T
Hayashi, Y
机构
[1] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
[2] Univ Gesamthsch Siegen, Dept Elect Engn & Comp Sci, D-57068 Siegen, Germany
[3] Meiji Univ, Dept Comp Sci, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
关键词
fuzzy regression; multivariate regression; evolutionary algorithm;
D O I
10.1142/S0218488599000076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We first argue that a very important class of fuzzy functions in multivariate non-linear fuzzy regression is the multivariate fuzzy polynomials. Given some data, generated by a multivariate fuzzy function, our evolutionary algorithm searches our library of multivariate fuzzy polynomials for the one that best fits this data. Tests of our multivariate non-linear fuzzy regression package are given when the multivariate fuzzy function is a multivariate fuzzy polynomial and all the fuzzy numbers are non-negative.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 7 条
[1]   ON USING ALPHA-CUTS TO EVALUATE FUZZY EQUATIONS [J].
BUCKLEY, JJ ;
QU, YX .
FUZZY SETS AND SYSTEMS, 1990, 38 (03) :309-312
[2]  
PURI ML, 1981, CR ACAD SCI I-MATH, V293, P237
[3]  
Ruoning X, 1997, FUZZY SETS SYST, V90, P317
[4]  
Yabuuchi Y., 1994, Japanese Journal of Fuzzy Theory and Systems, V6, P673
[5]  
[No title captured]
[6]  
[No title captured]
[7]  
[No title captured]