A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements

被引:70
作者
Wohlmuth, BI [1 ]
Hoppe, RHW [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
关键词
mixed finite elements; a posteriori error estimation; adaptive grid refinement;
D O I
10.1090/S0025-5718-99-01125-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider mixed finite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangulations. In particular, we present and analyze four different kinds of error estimators: a residual based estimator, a hierarchical one, error estimators relying on the solution of local subproblems and on a superconvergence result, respectively. finally, we examine the relationship between the presented error estimators and compare their local components.
引用
收藏
页码:1347 / 1378
页数:32
相关论文
共 34 条
[1]  
Achchab B, 1998, NUMER MATH, V80, P159, DOI 10.1007/s002110050364
[2]  
[Anonymous], RAIRO RAN R
[3]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[4]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[5]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[6]  
BANK R, 1983, SCI COMPUT, V44, P3
[7]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[8]  
BECKER R, 1996, 961 U HEID SFB 359
[9]   A posteriori error estimates for elliptic problems in two and three space dimensions [J].
Bornemann, FA ;
Erdmann, B ;
Kornhuber, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1188-1204
[10]   Posteriori error estimators for the Raviart-Thomas element [J].
Braess, D ;
Verfurth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2431-2444