Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1-xZnxS/ZnS Nanocrystals

被引:168
作者
Bae, Wan Ki [2 ]
Nam, Min Ki [1 ]
Char, Kookheon [2 ]
Lee, Seonghoon [1 ]
机构
[1] Seoul Natl Univ, Sch Chem, NANO Syst Inst, Natl Core Res Ctr, Seoul 151747, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Ctr Funct Polymer Thin Films, Seoul 151747, South Korea
关键词
D O I
10.1021/cm801201x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrated a facile synthesis of highly luminescent blue emitting Cd1-xZnxS/ZnS core/shell structured nanocrystals (NCs) in straightforward and reproducible manner. The alloyed Cd1-xZnxS cores with homogeneity in both size and composition were prepared by introducing S precursors (S dissolved in the noncoordinating solvent (1-octadecene)) into the mixed solution of Cd-Oleate (Cd(OA)(2)) and Zn-Oleate (Zn(OA)(2)) at elevated temperature (300 degrees C). ZnS shells were successively overcoated on the prepared cores by the second injection of S precursors (S powder dissolved in tributylphosphine, TBPS) directly into the reactor with existing alloyed Cd1-xZnxS NC cores without any purification steps. The prepared NCs exhibit strong band edge emission with high photoluminescent quantum yield (PL QY, up to 80%) and narrow spectral bandwidth (fwhm < 25 nm), which is believed to originate from the successful growth of ZnS shell layers on the Cd1-xZnxS cores and the interfacial compatibility between Cd1-xZnxS cores and the ZnS shell layers through the intradiffusion of Zn atoms from the ZnS shells into the Cd1-xZnxS cores during the shell formation reaction. The emission wavelength (PL lambda(max)) of Cd1-xZnx/ZnS core/shell NCs was finely tuned from violet (415 nm) to blue (461 nm) by adjusting the amount of S precursors in the first injection (S in 1-octadecene) and thus changing actual Cd content ratio in the alloyed Cd1-xZnxS cores (0.49 <= x <= 0.76). Furthermore, multigram (3 g) scale production of Cd1-xZnxS/ZnS core/shell NCs with narrow size distribution and spectral bandwidth was also demonstrated.
引用
收藏
页码:5307 / 5313
页数:7
相关论文
共 47 条
[1]   Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well [J].
Achermann, M ;
Petruska, MA ;
Kos, S ;
Smith, DL ;
Koleske, DD ;
Klimov, VI .
NATURE, 2004, 429 (6992) :642-646
[2]   White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio [J].
Ali, Moazzam ;
Chattopadhyay, Soma ;
Nag, Angshuman ;
Kumar, Akshay ;
Sapra, Sameer ;
Chakraborty, S. ;
Sarma, D. D. .
NANOTECHNOLOGY, 2007, 18 (07)
[3]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[4]   Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer [J].
Anikeeva, Polina O. ;
Halpert, Jonathan E. ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2007, 7 (08) :2196-2200
[5]   Single-step synthesis of quantum dots with chemical composition gradients [J].
Bae, Wan Ki ;
Char, Kookheon ;
Hur, Hyuck ;
Lee, Seonghoon .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :531-539
[6]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[8]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[9]   Blue semiconductor nanocrystal laser [J].
Chan, Y ;
Steckel, JS ;
Snee, PT ;
Caruge, JM ;
Hodgkiss, JM ;
Nocera, DG ;
Bawendi, MG .
APPLIED PHYSICS LETTERS, 2005, 86 (07) :1-3
[10]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803