Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches

被引:69
作者
Cheung, Foo [2 ]
Win, Joe [3 ]
Lang, Jillian M. [4 ]
Hamilton, John [1 ]
Vuong, Hue [2 ]
Leach, Jan E. [4 ]
Kamoun, Sophien [3 ]
Levesque, C. Andre [5 ]
Tisserat, Ned [4 ]
Buell, C. Robin [1 ]
机构
[1] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[2] J Craig Venter Inst, Rockville, MD 20850 USA
[3] Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
[4] Colorado State Univ, Dept Bioagr Sci & Pest Management, Ft Collins, CO 80523 USA
[5] Agr & Agri Food Canada, Ottawa, ON K1A 0C6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1186/1471-2164-9-542
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Pythium species are an agriculturally important genus of plant pathogens, yet are not understood well at the molecular, genetic, or genomic level. They are closely related to other oomycete plant pathogens such as Phytophthora species and are ubiquitous in their geographic distribution and host rage. To gain a better understanding of its gene complement, we generated Expressed Sequence Tags (ESTs) from the transcriptome of Pythium ultimum DAOM BR144 (= ATCC 200006 = CBS 805.95) using two high throughput sequencing methods, Sanger-based chain termination sequencing and pyrosequencing-based sequencing-by-synthesis. Results: A single half-plate pyrosequencing (454 FLX) run on adapter-ligated cDNA from a normalized cDNA population generated 90,664 reads with an average read length of 190 nucleotides following cleaning and removal of sequences shorter than 100 base pairs. After clustering and assembly, a total of 35,507 unique sequences were generated. In parallel, 9,578 reads were generated from a library constructed from the same normalized cDNA population using dideoxy chain termination Sanger sequencing, which upon clustering and assembly generated 4,689 unique sequences. A hybrid assembly of both Sanger- and pyrosequencing-derived ESTs resulted in 34,495 unique sequences with 1,110 sequences (3.2%) that were solely derived from Sanger sequencing alone. A high degree of similarity was seen between P. ultimum sequences and other sequenced plant pathogenic oomycetes with 91% of the hybrid assembly derived sequences > 500 bp having similarity to sequences from plant pathogenic Phytophthora species. An analysis of Gene Ontology assignments revealed a similar representation of molecular function ontologies in the hybrid assembly in comparison to the predicted proteomes of three Phytophthora species, suggesting a broad representation of the P. ultimum transcriptome was present in the normalized cDNA population. P. ultimum sequences with similarity to oomycete RXLR and Crinkler effectors, Kazal-like and cystatin-like protease inhibitors, and elicitins were identified. Sequences with similarity to thiamine biosynthesis enzymes that are lacking in the genome sequences of three Phytophthora species and one downy mildew were identified and could serve as useful phylogenetic markers. Furthermore, we identified 179 candidate simple sequence repeats that can be used for genotyping strains of P. ultimum. Conclusion: Through these two technologies, we were able to generate a robust set (similar to 10 Mb) of transcribed sequences for P. ultimum. We were able to identify known sequences present in oomycetes as well as identify novel sequences. An ample number of candidate polymorphic markers were identified in the dataset providing resources for phylogenetic and diagnostic marker development for this species. On a technical level, in spite of the depth possible with 454 FLX platform, the Sanger and pyro-based sequencing methodologies were complementary as each method generated sequences unique to each platform.
引用
收藏
页数:10
相关论文
共 54 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Isozyme variation, morphology, and growth response to temperature in Pythium ultimum [J].
Barr, DJS ;
Warwick, SI ;
Desaulniers, NL .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1996, 74 (05) :753-761
[4]  
Bhattacharjee Souvik, 2006, PLoS Pathogens, V2, DOI 10.1371/journal.ppat.0020050
[5]   Trafficking arms: oomycete effectors enter host plant cells [J].
Birch, PRJ ;
Rehmany, AP ;
Pritchard, L ;
Kamoun, S ;
Beynon, JL .
TRENDS IN MICROBIOLOGY, 2006, 14 (01) :8-11
[6]   The TIGR plant transcript assemblies database [J].
Childs, Kevin L. ;
Hamilton, John P. ;
Zhu, Wei ;
Ly, Eugene ;
Cheung, Foo ;
Wu, Hank ;
Rabinowicz, Pablo D. ;
Town, Chris D. ;
Buell, C. Robin ;
Chan, Agnes P. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D846-D851
[7]   DNA sequence quality trimming and vector removal [J].
Chou, HH ;
Holmes, MH .
BIOINFORMATICS, 2001, 17 (12) :1093-1104
[8]  
COOK RJ, 1980, PLANT DIS, V64, P102, DOI 10.1094/PD-64-1061
[9]  
*EBI, EBI UNIPR KNOWL
[10]   GENETIC-VARIATION IN HOMOTHALLIC AND HYPHAL SWELLING ISOLATES OF PYTHIUM-ULTIMUM VAR ULTIMUM AND P-ULTIMUM VAR SPORANGIFERUM [J].
FRANCIS, DM ;
GEHLEN, MF ;
STCLAIR, DA .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1994, 7 (06) :766-775