Fabrication, functionalization, and application of electrospun biopolymer nanofibers

被引:248
作者
Kriegel, Christina [1 ]
Arrechi, Alessandra [2 ]
Kit, Kevin [3 ]
McClements, D. J. [1 ]
Weiss, Jochen [1 ]
机构
[1] Univ Massachusetts, Dept Food Sci, Amherst, MA 01003 USA
[2] Univ Milan, Dipartimento Sci & Tecnol Alimentari & Microbiol, I-20133 Milan, Italy
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
nano-fibers; nanotechnology; electospinning; food;
D O I
10.1080/10408390802241325
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The use of novel nanostructured materials has attracted considerable interest in the food industry for their utilization as highly functional ingredients, high-performance packaging materials, processing aids, and food quality and safety sensors. Most previous application interest has focused on the development of nanoparticles. However, more recently, the ability to produce non-woven mats composed of nanofibers that can be used in food applications is beginning to be investigated. Electrospinning is a novel fabrication technique that can be used to produce fibers with diameters below 100 nm from (bio-) polymer solutions. These nanofibers have been shown to possess unique properties that distinguish them from non-woven fibers produced by other methods, e.g., melt-blowing. This is because first the process involved results in a high orientation of polymers within the fibers that leads to mechanically superior properties, e.g., increased tensile strengths. Second, during the spinning of the fibers from polymer solutions, the solvent is rapidly evaporated allowing the production of fibers composed of polymer blends that would typically phase separate if spun with other processes. Third, the small dimensions of the fibers lead to very high specific surface areas. Because of this the fiber properties may be greatly influenced by surface properties giving rise to fiber functionalities not found in fibers of larger sizes. For food applications, the fibers may find uses as ingredients if they are composed solely of edible polymers and GRAS ingredients, (e.g., fibers could contain functional ingredients such as nutraceuticals, antioxidants, antimicrobials, and flavors), as active packaging materials or as processing aids (e.g., catalytic reactors, membranes, filters (Lala et al., 2007), and sensors (Manesh et al., 2007; Ren et al., 2006; Sawicka et al., 2005). This review is therefore intended to introduce interested food and agricultural scientists to the concept of nano-fiber manufacturing with a particular emphasis on the use of biopolymers. We will review typical fabrication set-ups, discuss the influence of process conditions on nanofiber properties, and then review previous studies that describe the production of biopolymer-based nanofibers. Finally we briefly discuss emerging methods to further functionalize fibers and discuss potential applications in the area of food science and technology.
引用
收藏
页码:775 / 797
页数:23
相关论文
共 154 条
[1]   Factors affecting short-term and long-term stabilities of proteins (Reprinted from Advanced Drug Delivery Reviews, vol 9, pg 201-237, 1992) [J].
Arakawa, T ;
Prestrelski, SJ ;
Kenney, WC ;
Carpenter, JF .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 46 (1-3) :307-326
[2]   Nanofibrous filtering media: Filtration problems and solutions from tiny materials [J].
Barhate, R. S. ;
Ramakrishna, Seeram .
JOURNAL OF MEMBRANE SCIENCE, 2007, 296 (1-2) :1-8
[3]   Physico-chemical characterization of chitosans varying in degree of acetylation [J].
Berth, G ;
Dautzenberg, H ;
Peter, MG .
CARBOHYDRATE POLYMERS, 1998, 36 (2-3) :205-216
[4]   Electrospun chitosan-based nanofibers and their cellular compatibility [J].
Bhattarai, N ;
Edmondson, D ;
Veiseh, O ;
Matsen, FA ;
Zhang, MQ .
BIOMATERIALS, 2005, 26 (31) :6176-6184
[5]   Controlled synthesis and structural stability of alginate-based nanofibers [J].
Bhattarai, Narayan ;
Zhang, Miqin .
NANOTECHNOLOGY, 2007, 18 (45)
[6]   Nanofibrous materials and their applications [J].
Burger, Christian ;
Hsiao, Benjamin S. ;
Chu, Benjamin .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2006, 36 :333-368
[7]  
BUSCHLEDILLER G, 2006, MODIFIED FIBERS MED
[8]   The avian eggshell extracellular matrix as a model for biomineralization [J].
Carrino, DA ;
Dennis, JE ;
Wu, TM ;
Arias, JL ;
Fernandez, MS ;
Rodriguez, JP ;
Fink, DJ ;
Heuer, AH ;
Caplan, AI .
CONNECTIVE TISSUE RESEARCH, 1996, 35 (1-4) :325-328
[9]   Electrospinning of collagen-chitosan complex [J].
Chen, Zonggang ;
Mo, Xiumei ;
Qing, Fengling .
MATERIALS LETTERS, 2007, 61 (16) :3490-3494
[10]   Sustained release of proteins from electrospun biodegradable fibers [J].
Chew, SY ;
Wen, J ;
Yim, EKF ;
Leong, KW .
BIOMACROMOLECULES, 2005, 6 (04) :2017-2024