Structural and energetic basis of folded-protein transport by the FimD usher

被引:73
作者
Geibel, Sebastian [1 ,2 ]
Procko, Erik [3 ,4 ]
Hultgren, Scott J. [5 ,6 ]
Baker, David [3 ,4 ]
Waksman, Gabriel [1 ,2 ]
机构
[1] UCL, Inst Struct & Mol Biol, London WC1E 7HX, England
[2] Univ London Birkbeck Coll, London WC1E 7HX, England
[3] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
[4] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[5] Washington Univ, Sch Med, Ctr Womens Infect Dis Res, St Louis, MO 63011 USA
[6] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63011 USA
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
BACTERIAL OUTER-MEMBRANE; CRYSTAL-STRUCTURE; PILUS; CRYSTALLOGRAPHY; REFINEMENT;
D O I
10.1038/nature12007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Type 1 pili, produced by uropathogenic Escherichia coli, are multi-subunit fibres crucial in recognition of and adhesion to host tissues(1). During pilus biogenesis, subunits are recruited to an outer membrane assembly platform, the FimD usher, which catalyses their polymerization and mediates pilus secretion(2). The recent determination of the crystal structure of an initiation complex provided insight into the initiation step of pilus biogenesis resulting in pore activation, but very little is known about the elongation steps that follow(3). Here, to address this question, we determine the structure of an elongation complex in which the tip complex assembly composed of FimC, FimF, FimG and FimH passes through FimD. This structure demonstrates the conformational changes required to prevent backsliding of the nascent pilus through the FimD pore and also reveals unexpected properties of the usher pore. We show that the circular binding interface between the pore lumen and the folded substrate participates in transport by defining a low-energy pathway along which the nascent pilus polymer is guided during secretion.
引用
收藏
页码:243 / +
页数:5
相关论文
共 26 条
[21]   Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation [J].
Sauer, FG ;
Pinkner, JS ;
Waksman, G ;
Hultgren, SJ .
CELL, 2002, 111 (04) :543-551
[22]   Structural basis of chaperone function and pilus biogenesis [J].
Sauer, FG ;
Fütterer, K ;
Pinkner, JS ;
Dodson, KW ;
Hultgren, SJ ;
Waksman, G .
SCIENCE, 1999, 285 (5430) :1058-1061
[23]   Super-resolution biomolecular crystallography with low-resolution data [J].
Schroeder, Gunnar F. ;
Levitt, Michael ;
Brunger, Axel T. .
NATURE, 2010, 464 (7292) :1218-U146
[24]   Pilus chaperones represent a new type of protein-folding catalyst [J].
Vetsch, M ;
Puorger, C ;
Spirig, T ;
Grauschopf, U ;
Weber-Ban, EU ;
Glockshuber, R .
NATURE, 2004, 431 (7006) :329-332
[25]   Structural biology of the chaperone-usher pathway of pilus biogenesis [J].
Waksman, Gabriel ;
Hultgren, Scott J. .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (11) :765-774
[26]   Structure and biogenesis of the capsular F1 antigen from Yersinia pestis:: Preserved folding energy drives fiber formation [J].
Zavialov, AV ;
Berglund, J ;
Pudney, AF ;
Fooks, LJ ;
Ibrahim, TM ;
MacIntyre, S ;
Knight, SD .
CELL, 2003, 113 (05) :587-596