Conformal invariance in two-dimensional turbulence

被引:149
作者
Bernard, D
Boffetta, G
Celani, A
Falkovich, G [1 ]
机构
[1] CEA, CNRS, Serv Phys Theor Saclay, F-91191 Gif Sur Yvette, France
[2] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy
[3] Univ Turin, INFN, I-10125 Turin, Italy
[4] INLN, CNRS, F-06560 Valbonne, France
[5] Weizmann Inst Sci, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
D O I
10.1038/nphys217
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The simplicity of fundamental physical laws manifests itself in fundamental symmetries. Although systems with an infinite number of strongly interacting degrees of freedom (in particle physics and critical phenomena) are hard to describe, they often demonstrate symmetries, in particular scale invariance. In two dimensions (2D) locality often extends scale invariance to a wider class of conformal transformations that allow non-uniform rescaling. Conformal invariance enables a thorough classification of universality classes of critical phenomena in 2D. Is there conformal invariance in 2D turbulence, a paradigmatic example of a strongly interacting non-equilibrium system? Here, we show numerically that some features of a 2D inverse turbulent cascade show conformal invariance. We observe that the statistics of vorticity clusters are remarkably close to that of critical percolation, one of the simplest universality classes of critical phenomena. These results represent a key step in the unification of 2D physics within the framework of conformal symmetry.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 34 条
[1]   Conformal field theories of stochastic Loewner evolutions [J].
Bauer, M ;
Bernard, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 239 (03) :493-521
[2]  
BAUER M, 2003, NATO SCI SERIES, V208
[3]  
BEFFARA V, 2002, DIMENSION SLE CURVES
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]  
BOFFETTA G, 2000, PHYS REV E, V61, P29
[6]   Percolation model or nodal domains of chaotic wave functions [J].
Bogomolny, E ;
Schmit, C .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4
[7]   SLE for theoretical physicists [J].
Cardy, J .
ANNALS OF PHYSICS, 2005, 318 (01) :81-118
[8]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[9]  
CHEN S, 2004, 57 APS M DIV FLUID D
[10]  
DUBEDAT J, EXCURSION DECOMPOSIT