SLE for theoretical physicists

被引:266
作者
Cardy, J
机构
[1] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3N9, England
[2] Univ Oxford All Souls Coll, Oxford OX1 4AL, England
关键词
D O I
10.1016/j.aop.2005.04.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article provides an introduction to Schramm (stochastic)-Loewner evolution (SLE) and to its connection with conformal field theory, from the point of view of its application to two-dimensional critical behaviour. The emphasis is on the conceptual ideas rather than rigorous proofs. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 118
页数:38
相关论文
共 47 条
[1]  
*AM MATH SOC, 2005, CONF INV PROC PLAN B
[2]   Conformal transformations and the SLE partition function martingale [J].
Bauer, M ;
Bernard, D .
ANNALES HENRI POINCARE, 2004, 5 (02) :289-326
[3]   CFTs of SLEs: the radial-case [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2004, 583 (3-4) :324-330
[4]   Conformal field theories of stochastic Loewner evolutions [J].
Bauer, M ;
Bernard, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 239 (03) :493-521
[5]   SLE martingales and the Virasoro algebra [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2003, 557 (3-4) :309-316
[6]   SLEκ growth processes and conformal field theories [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2002, 543 (1-2) :135-138
[7]   Hausdorff dimensions for SLE6 [J].
Beffara, V .
ANNALS OF PROBABILITY, 2004, 32 (3B) :2606-2629
[8]   INFINITE CONFORMAL SYMMETRY OF CRITICAL FLUCTUATIONS IN 2 DIMENSIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :763-774
[9]   Linking numbers for self-avoiding loops and percolation: Application to the spin quantum Hall transition [J].
Cardy, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (16) :3507-3510
[10]   Calogero-Sutherland model and bulk-boundary correlations in conformal field theory [J].
Cardy, J .
PHYSICS LETTERS B, 2004, 582 (1-2) :121-126