Conformal transformations and the SLE partition function martingale

被引:38
作者
Bauer, M [1 ]
Bernard, D [1 ]
机构
[1] CEA Saclay, CNRS, Unite Rech Associee, DSM,SPhT,Serv Phys Theor Saclay, F-91191 Gif Sur Yvette, France
来源
ANNALES HENRI POINCARE | 2004年 / 5卷 / 02期
关键词
D O I
10.1007/s00023-004-0170-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an implementation in conformal field theory (CFT) of local finite conformal transformations fixing a point. We give explicit constructions when the fixed point is either the origin or the point at infinity. Both cases involve the exponentiation of a Borel subalgebra of the Virasoro algebra. We use this to build coherent state representations and to derive a close analog of Wick's theorem for the Virasoro algebra. This allows to compute the conformal partition function in non trivial geometries obtained by removal of hulls from the upper half-plane. This is then applied to stochastic Loewner evolutions (SLE). We give a rigorous derivation of the equations, obtained previously by the authors, that connect the stochastic Loewner equation to the representation theory of the Virasoro algebra. We give a new proof that this construction enumerates all polynomial SLE martingales. When one of the hulls removed from the upper half-plane is the SLE hull, we show that the partition function reduces to a useful local martingale known to probabilists, thereby unraveling its CFT origin.
引用
收藏
页码:289 / 326
页数:38
相关论文
共 32 条
[1]  
[Anonymous], COMMUNICATION
[2]   Conformal field theories of stochastic Loewner evolutions [J].
Bauer, M ;
Bernard, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 239 (03) :493-521
[3]   SLE martingales and the Virasoro algebra [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2003, 557 (3-4) :309-316
[4]   SLEκ growth processes and conformal field theories [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2002, 543 (1-2) :135-138
[5]  
BELAVIN A, 1980, NUCL PHYS B, V241, P333
[6]  
CARDY J, ARXIVMATHPH0103018
[7]  
CARDY J, ARXIVCONDMAT0209638
[8]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[9]   LOOP EQUATIONS AND NONPERTURBATIVE EFFECTS IN 2-DIMENSIONAL QUANTUM-GRAVITY [J].
DAVID, F .
MODERN PHYSICS LETTERS A, 1990, 5 (13) :1019-1029
[10]   LOOP EQUATIONS AND VIRASORO CONSTRAINTS IN NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY [J].
DIJKGRAAF, R ;
VERLINDE, H ;
VERLINDE, E .
NUCLEAR PHYSICS B, 1991, 348 (03) :435-456