Conformal transformations and the SLE partition function martingale

被引:38
作者
Bauer, M [1 ]
Bernard, D [1 ]
机构
[1] CEA Saclay, CNRS, Unite Rech Associee, DSM,SPhT,Serv Phys Theor Saclay, F-91191 Gif Sur Yvette, France
来源
ANNALES HENRI POINCARE | 2004年 / 5卷 / 02期
关键词
D O I
10.1007/s00023-004-0170-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an implementation in conformal field theory (CFT) of local finite conformal transformations fixing a point. We give explicit constructions when the fixed point is either the origin or the point at infinity. Both cases involve the exponentiation of a Borel subalgebra of the Virasoro algebra. We use this to build coherent state representations and to derive a close analog of Wick's theorem for the Virasoro algebra. This allows to compute the conformal partition function in non trivial geometries obtained by removal of hulls from the upper half-plane. This is then applied to stochastic Loewner evolutions (SLE). We give a rigorous derivation of the equations, obtained previously by the authors, that connect the stochastic Loewner equation to the representation theory of the Virasoro algebra. We give a new proof that this construction enumerates all polynomial SLE martingales. When one of the hulls removed from the upper half-plane is the SLE hull, we show that the partition function reduces to a useful local martingale known to probabilists, thereby unraveling its CFT origin.
引用
收藏
页码:289 / 326
页数:38
相关论文
共 32 条
[21]   Values of Brownian intersection exponents, II: Plane exponents [J].
Lawler, GF ;
Schramm, O ;
Werner, W .
ACTA MATHEMATICA, 2001, 187 (02) :275-308
[22]   Values of Brownian intersection exponents, I: Half-plane exponents [J].
Lawler, GF ;
Schramm, O ;
Werner, W .
ACTA MATHEMATICA, 2001, 187 (02) :237-273
[23]  
LAWLER GF, INTRO STOCHASTIC LOE
[25]   Crystal statistics I A two-dimensional model with an order-disorder transition [J].
Onsager, L .
PHYSICAL REVIEW, 1944, 65 (3/4) :117-149
[26]  
ONSAGER L, 1949, NUOVO CIMENTO SUPPL, V6, P261
[27]  
RHODE S, ARXIVMATHPR0106036
[28]   Scaling limits of loop-erased random walks and uniform spanning trees [J].
Schramm, O .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 118 (1) :221-288
[29]   Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits [J].
Smirnov, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03) :239-244
[30]  
WERNER W, 2002, 2002 SAINT FLOUR SUM