Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits

被引:473
作者
Smirnov, S [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 333卷 / 03期
关键词
D O I
10.1016/S0764-4442(01)01991-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we study critical site percolation on triangular lattice. We introduce harmonic conformal invariants as scaling limits of certain probabilities and calculate their values. As a corollary we obtain conformal invariance of the crossing probabilities (conjecture attributed to Aizenman by Langlands, Pouliot, and Saint-Aubin in [7]) and find their values (predicted by Cardy in [4], we discuss simpler representation found by Carleson). Then we discuss existence, uniqueness, and conformal invariance of the continuum scaling limit. The detailed proofs appear in [10]. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 11 条
[1]   Holder regularity and dimension bounds for random curves [J].
Aizenman, M ;
Burchard, A .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :419-453
[2]   Path-crossing exponents and the external perimeter in 2D percolation [J].
Aizenman, M ;
Duplantier, B ;
Aharony, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (07) :1359-1362
[3]  
AIZENMAN M, 1996, STATPHYS, V19, P104
[4]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[5]  
HGRIMMETT G, 1999, PERCOLATION
[6]  
Kakutani S., 1944, Proc. Imp. Acad. Tokyo, V20, P706, DOI 10.3792/pia/1195572706
[7]   CONFORMAL-INVARIANCE IN 2-DIMENSIONAL PERCOLATION [J].
LANGLANDS, R ;
POULIOT, P ;
SAINTAUBIN, Y .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 30 (01) :1-61
[8]  
Lawler GF, 2001, MATH RES LETT, V8, P13
[9]  
LAWLER GF, IN PRESS ACTA MATH
[10]  
SMIRNOV S, CRITICAL PERCOLATION