Behavioral and neurophysiological correlates of episodic coding, proactive interference, and list length effects in a running span verbal working memory task

被引:55
作者
Postle, Bradley R. [1 ]
Berger, Jeffrey S. [2 ]
Goldstein, Jeremy H. [2 ]
Curtis, Clayton E. [3 ]
D'Esposito, Mark [3 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Univ Penn, Med Ctr, Philadelphia, PA 19104 USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
Blood Oxygen Level Dependent; Proactive Interference; List Length; Group Integrity; Trial Length;
D O I
10.3758/CABN.1.1.10
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Updating refers to (1) discarding items from, (2) repositioning items in, and (3) adding items to a running working memory span. Our behavioral and fMRI experiments varied three factors: trial length, proactive interference (PI), and group integrity. Group integrity reflected whether the grouping of items at the encoding stage was violated at discarding. Behavioral results were consistent with the idea that updating processes have a relatively short refractory period and may not fatigue, and they revealed that episodic information about group context is encoded automatically in working memory stimulus representations. The fMRI results did not show evidence that updating requirements in a task recruit executive control processes other than those supporting performance on nonupdating trials. They did reveal an item-accumulation effect, in which signal increased monotonically with the number of items presented during the trial, despite the insensitivity of behavioral measures to this factor. Behavioral and fMRI correlates of PI extended previous results and rejected an alternative explanation of PI effects in working memory.
引用
收藏
页码:10 / 21
页数:12
相关论文
共 39 条
[1]   The variability of human, BOLD hemodynamic responses [J].
Aguirre, GK ;
Zarahn, E ;
D'Esposito, M .
NEUROIMAGE, 1998, 8 (04) :360-369
[2]  
ASHBURNER J, 1996, NEUROIMAGE, V3, pS111
[3]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[4]   A parametric study of prefrontal cortex involvement in human working memory [J].
Braver, TS ;
Cohen, JD ;
Nystrom, LE ;
Jonides, J ;
Smith, EE ;
Noll, DC .
NEUROIMAGE, 1997, 5 (01) :49-62
[5]  
Bunge S. A., 2000, ROTM RES I 10 ANN C
[6]   Memory for serial order: A network model of the phonological loop and its timing [J].
Burgess, N ;
Hitch, GJ .
PSYCHOLOGICAL REVIEW, 1999, 106 (03) :551-581
[7]   Maintenance versus manipulation of information held in working memory: An event-related fMRI study [J].
D'Esposito, M ;
Postle, BR ;
Ballard, D ;
Lease, J .
BRAIN AND COGNITION, 1999, 41 (01) :66-86
[8]   Functional MRI studies of spatial and nonspatial working memory [J].
D'Esposito, M ;
Aguirre, GK ;
Zarahn, E ;
Ballard, D ;
Shin, RK ;
Lease, J .
COGNITIVE BRAIN RESEARCH, 1998, 7 (01) :1-13
[9]  
D'Esposito M, 2000, CONTROL OF COGNITIVE PROCESSES: ATTENTION AND PERFORMANCE XVIII, P579
[10]   The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI [J].
D'Esposito, M ;
Postle, BR ;
Jonies, J ;
Smith, EE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (13) :7514-7519