Computer analysis of computed tomography scans of the lung: A survey

被引:387
作者
Sluimer, I
Schilham, A
Prokop, M
van Ginneken, B
机构
[1] Univ Utrecht, Med Ctr, Image Sci Inst, NL-3584 CX Utrecht, Netherlands
[2] Univ Utrecht, Med Ctr, Dept Radiol, NL-3584 CX Utrecht, Netherlands
关键词
airway disease; chest; computer-aided diagnosis; CT; emphysema quantification; interstitial lung disease; literature review; literature survey; lung cancer; nodule characterization; nodule detection; nodule size measurements; pulmonary embolism; registration; segmentation;
D O I
10.1109/TMI.2005.862753
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Current computed tomography (CT) technology allows for near isotropic, submillimeter resolution acquisition of the complete chest in a single breath hold. These thin-slice chest scans have become indispensable in thoracic radiology, but have also substantially increased the data load for radiologists. Automating the analysis of such data is, therefore, a necessity and this has created a rapidly developing research area in medical imaging. This paper presents a review of the literature on computer analysis of the lungs in CT scans and addresses segmentation of various pulmonary structures, registration of chest scans, and applications aimed at detection, classification and quantification of chest abnormalities. In addition, research trends and challenges are identified and directions for future research are discussed.
引用
收藏
页码:385 / 405
页数:21
相关论文
共 216 条
[41]   Automatic segmentation of pulmonary nodules by using dynamic 3D cross-correlation for interactive CAD systems [J].
Fan, L ;
Qian, JZ ;
Odry, B ;
Shen, H ;
Naidich, D ;
Kohl, G ;
Klotz, E .
MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 :1362-1369
[42]  
Farag A, 2004, LECT NOTES COMPUT SC, V3217, P856
[43]  
Fetita CI, 2003, LECT NOTES COMPUT SC, V2878, P626
[44]  
Fetita CL, 2002, 2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, P221, DOI 10.1109/ISBI.2002.1029233
[45]   Recognition method of lung nodules using blood vessel extraction techniques and 3D object models [J].
Fukano, G ;
Takizawa, H ;
Shigemoto, K ;
Yamamoto, S ;
Matsumoto, T ;
Tateno, Y ;
Iinuma, T .
MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 :190-198
[46]   Application of an artificial neural network to high-resolution CT: Usefulness in differential diagnosis of diffuse lung disease [J].
Fukushima, A ;
Ashizawa, K ;
Yamaguchi, T ;
Matsuyama, N ;
Hayashi, H ;
Kida, I ;
Imafuku, Y ;
Egawa, A ;
Kimura, S ;
Nagaoki, K ;
Honda, S ;
Katsuragawa, S ;
Doi, K ;
Hayashi, K .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2004, 183 (02) :297-305
[47]   Computer aided detection of lung nodules: false positive reduction using a 3D gradient field method [J].
Ge, Z ;
Sahiner, B ;
Chan, HP ;
Hadjiiski, LM ;
Wei, J ;
Bogot, N ;
Cascade, PN ;
Kazerooni, EA ;
Zhou, C .
MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 :1076-1082
[48]   Repeatability of quantitative CT indexes of emphysema in patients evaluated for lung volume reduction surgery [J].
Gierada, DS ;
Yusen, RD ;
Pilgram, TK ;
Crouch, L ;
Slone, RM ;
Bae, KT ;
Lefrak, SS ;
Cooper, JD .
RADIOLOGY, 2001, 220 (02) :448-454
[49]  
Gonzalez Rafael C, 2002, DIGITAL IMAGE PROCES
[50]   Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules [J].
Gould, MK ;
Sanders, GD ;
Barnett, PG ;
Rydzak, CE ;
Maclean, CC ;
McClellan, MB ;
Owens, DK .
ANNALS OF INTERNAL MEDICINE, 2003, 138 (09) :724-735