Synthesis of nanostructured Ni3S2 with different morphologies as negative electrode materials for lithium ion batteries

被引:55
作者
Duan, Wenchao [1 ]
Yan, Wenchao [1 ]
Yan, Xiao [1 ]
Munakata, Hirokazu [2 ]
Jin, Yongcheng [1 ]
Kanamura, Kiyoshi [2 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao Ind Energy Storage Technol Inst, Qingdao 266101, Peoples R China
[2] Tokyo Metropolitan Univ, Grad Sch Urban Environm Sci, Dept Appl Chem, Tokyo 1920397, Japan
关键词
Lithium ion batteries; Ni3S2; Negative electrode material; Nanostructure; HIGH-PERFORMANCE CATHODES; ELECTROCHEMICAL PERFORMANCE; ENERGY-STORAGE; NI FOAM; NANOSHEETS;
D O I
10.1016/j.jpowsour.2015.05.098
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni3S2 with different morphologies (nanoflakes, nanosheets, nanoparticles) have been synthesized by simply altering the sulphur sources (thioacetamide, thiourea and sodium thiosulfate) of a hydrothermal process. The obtained three carbon-free nanostructures are evaluated as negative electrode materials for lithium ion batteries. Ni3S2 nanoflakes exhibit the best cycle and rate performance among the samples prepared, which is benefited from their small particle size and porous structure. It maintains a reversible capacity of 861 mA h g(-1) after 70 cycles at a current density of 0.4 A g(-1), and a reversible capacity of 514 mA h g(-1) even at a current density as high as 4.0 A g(-1). These features make Ni3S2 nanoflakes a promising candidate as high performance negative electrode material for lithium ion batteries. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:706 / 711
页数:6
相关论文
共 34 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[3]   Cathodic Deposition of Flaky Nickel Sulfide Nanostructure as an Electroactive Material for High-Performance Supercapacitors [J].
Chou, Shu-Wei ;
Lin, Jeng-Yu .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :D178-D182
[4]   Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries [J].
Duan, Wenchao ;
Zhu, Zhiqiang ;
Li, Hao ;
Hu, Zhe ;
Zhang, Kai ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) :8668-8675
[5]   Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries [J].
Duan, Wenchao ;
Hu, Zhe ;
Zhang, Kai ;
Cheng, Fangyi ;
Tao, Zhanliang ;
Chen, Jun .
NANOSCALE, 2013, 5 (14) :6485-6490
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries [J].
Feng, Na ;
Hu, Duokai ;
Wang, Peng ;
Sun, Xiaolei ;
Li, Xiuwan ;
He, Deyan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (24) :9924-9930
[8]   Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site [J].
Gao, Haiyan ;
Jiao, Lifang ;
Peng, Wenxiu ;
Liu, Guang ;
Yang, Jiaqin ;
Zhao, Qianqian ;
Qi, Zhan ;
Si, Yuchang ;
Wang, Yijing ;
Yuan, Huatang .
ELECTROCHIMICA ACTA, 2011, 56 (27) :9961-9967
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   MoS2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries [J].
Hu, Zhe ;
Wang, Lixiu ;
Zhang, Kai ;
Wang, Jianbin ;
Cheng, Fangyi ;
Tao, Zhanliang ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (47) :12794-12798