Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries

被引:134
作者
Duan, Wenchao [1 ]
Hu, Zhe [1 ]
Zhang, Kai [1 ]
Cheng, Fangyi [1 ,2 ]
Tao, Zhanliang [1 ]
Chen, Jun [1 ,2 ]
机构
[1] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[2] Nankai Univ, Synerget Innovat Ctr Chem Sci & Engn, Tianjin 300071, Peoples R China
关键词
HIGH-RATE CAPABILITY; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; LIFEPO4; COMPOSITES;
D O I
10.1039/c3nr01617j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li3V2(PO4)(3)@C core-shell nanoparticles with typical sizes of 20-40 nm were synthesized using a hydrothermal-assisted sol-gel method. Ascorbic acid and PEG-400 were adopted as carbon sources and reductants. The uniform Li3V2(PO4)(3)@C nanocomposite obtained was composed of a Li3V2(PO4)(3) core with high-phase purity and a graphitized carbon shell, which was characterized using XRD, SEM, TEM, and Raman analysis. The nanocomposite exhibited a remarkably high rate capability and long cyclability, delivering a discharge capacity of 138 mA h g(-1) at 5 C within a voltage range of 3-4.8 V and the capacity retention was 86% after 1000 cycles. The superior electrochemical performance of Li3V2(PO4)(3)@C indicates that it has potential for application as a cathode material in advanced rechargeable lithium-ion batteries.
引用
收藏
页码:6485 / 6490
页数:6
相关论文
共 35 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3 [J].
Barker, J. ;
Gover, R. K. B. ;
Burns, P. ;
Bryan, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (04) :A307-A313
[3]   Combination of Lightweight Elements and Nanostructured Materials for Batteries [J].
Chen, Jun ;
Cheng, Fangyi .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) :713-723
[4]   Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method [J].
Chen, Quanqi ;
Wang, Jianming ;
Tang, Zheng ;
He, Weichun ;
Shao, Haibo ;
Zhang, Jianqing .
ELECTROCHIMICA ACTA, 2007, 52 (16) :5251-5257
[5]   Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies [J].
Cheng, Fangyi ;
Zhang, Tianran ;
Zhang, Yi ;
Du, Jing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2474-2477
[6]   Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries [J].
Cheng, Fangyi ;
Wang, Hongbo ;
Zhu, Zhiqiang ;
Wang, Yan ;
Zhang, Tianran ;
Tao, Zhanliang ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3668-3675
[7]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[8]   Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries [J].
Cho, A. R. ;
Son, J. N. ;
Aravindan, V. ;
Kim, H. ;
Kang, K. S. ;
Yoon, W. S. ;
Kim, W. S. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (14) :6556-6560
[9]   Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries [J].
Deng, C. ;
Zhang, S. ;
Yang, S. Y. ;
Gao, Y. ;
Wu, B. ;
Ma, L. ;
Fu, B. L. ;
Wu, Q. ;
Liu, F. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (30) :15048-15056
[10]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209