Combination of Lightweight Elements and Nanostructured Materials for Batteries

被引:454
作者
Chen, Jun [1 ]
Cheng, Fangyi [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem & Engn, Res Ctr Energy Storage & Convers, Minist Educ,Chem Coll, Tianjin 300071, Peoples R China
关键词
POSITIVE-ELECTRODE MATERIALS; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; HYDROTHERMAL SYNTHESIS; ENERGY-CONVERSION; LITHIUM; NANOTUBES; NANOWIRES; INTERCALATION; NANOMATERIALS;
D O I
10.1021/ar800229g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H+, OH- and Li+/Mg2+ to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batterie's demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium - manganese dioxide (Li-Mn) and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MiO(2), CuV2O6, LiNi0.8Co0.2O2, LiFePO4, Fe2O3, Co3O4, TiS2, and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe2O3 nanotubes can deliver reversible capacity exceeding 500 mA . h/g, (Graphite used commercially has a theoretical capacity of 372 mA . h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO4 and metal hydroxide-coated Ni(OH)2 nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.
引用
收藏
页码:713 / 723
页数:11
相关论文
共 55 条
  • [1] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [2] TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries
    Armstrong, G
    Armstrong, AR
    Canales, J
    Bruce, PG
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) : A139 - A143
  • [3] Prototype systems for rechargeable magnesium batteries
    Aurbach, D
    Lu, Z
    Schechter, A
    Gofer, Y
    Gizbar, H
    Turgeman, R
    Cohen, Y
    Moshkovich, M
    Levi, E
    [J]. NATURE, 2000, 407 (6805) : 724 - 727
  • [4] Progress in rechargeable magnesium battery technology
    Aurbach, Doron
    Suresh, Gurukar Shivappa
    Levi, Elena
    Mitelman, Ariel
    Mizrahi, Oren
    Chusid, Orit
    Brunelli, Michela
    [J]. ADVANCED MATERIALS, 2007, 19 (23) : 4260 - +
  • [5] Nano-ionics in the context of lithium batteries
    Balaya, P.
    Bhattacharyya, A. J.
    Jamnik, J.
    Zhukovskii, Yu. F.
    Kotomin, E. A.
    Maier, J.
    [J]. JOURNAL OF POWER SOURCES, 2006, 159 (01) : 171 - 178
  • [6] Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications
    Bavykin, Dmitry V.
    Friedrich, Jens M.
    Walsh, Frank C.
    [J]. ADVANCED MATERIALS, 2006, 18 (21) : 2807 - 2824
  • [7] Brad AJ., 2000, Electrochemical Methods: Fundamentals and Applications
  • [8] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946
  • [9] Chemistry and properties of nanocrystals of different shapes
    Burda, C
    Chen, XB
    Narayanan, R
    El-Sayed, MA
    [J]. CHEMICAL REVIEWS, 2005, 105 (04) : 1025 - 1102
  • [10] Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries
    Cai, FS
    Zhang, GY
    Chen, J
    Gou, XL
    Liu, HK
    Dou, SX
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (32) : 4212 - 4216