Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field

被引:37
作者
Bell, David R. [1 ]
Qi, Rui [1 ]
Jing, Zhifeng [1 ]
Xiang, Jin Yu [2 ]
Mejias, Christopher [3 ]
Schnieders, Michael J. [4 ,5 ]
Ponderc, Jay W. [3 ]
Ren, Pengyu [1 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Washington Univ, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
[3] Washington Univ, Dept Chem, St Louis, MO 63130 USA
[4] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Biochem, Iowa City, IA 52242 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SPACE RANDOM-WALK; ORTHOGONAL SPACE; PROTEIN-LIGAND; ATOMIC MULTIPOLE; PRACTICALLY EFFICIENT; DRUG; SIMULATIONS; DYNAMICS; AFFINITIES; MECHANICS;
D O I
10.1039/c6cp02509a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.
引用
收藏
页码:30261 / 30269
页数:9
相关论文
共 63 条
[1]   Hydration Free Energy from Orthogonal Space Random Walk and Polarizable Force Field [J].
Abella, Jayvee R. ;
Cheng, Sara Y. ;
Wang, Qiantao ;
Yang, Wei ;
Ren, Pengyu .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (07) :2792-2801
[2]   On the calculation of entropy from covariance matrices of the atomic fluctuations [J].
Andricioaei, I ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (14) :6289-6292
[3]   Quantum Mechanical Binding Free Energy Calculation for Phosphopeptide Inhibitors of the Lck SH2 Domain [J].
Anisimov, Victor M. ;
Cavasotto, Claudio N. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (10) :2254-2263
[4]   Development of CHARMM Polarizable Force Field for Nucleic Acid Bases Based on the Classical Drude Oscillator Model [J].
Baker, Christopher M. ;
Anisimov, Victor M. ;
MacKerell, Alexander D., Jr. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (03) :580-596
[5]   Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J].
Barducci, Alessandro ;
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[6]   Absolute Single-Molecule Entropies from Quasi-Harmonic Analysis of Microsecond Molecular Dynamics: Correction Terms and Convergence Properties [J].
Baron, Riccardo ;
Huenenberger, Philippe H. ;
McCammon, J. Andrew .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (12) :3150-3160
[7]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[8]   HARMONIC-ANALYSIS OF LARGE SYSTEMS .1. METHODOLOGY [J].
BROOKS, BR ;
JANEZIC, D ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1522-1542
[9]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[10]  
Case D.A., 2014, Amber 14, V14