Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field

被引:37
作者
Bell, David R. [1 ]
Qi, Rui [1 ]
Jing, Zhifeng [1 ]
Xiang, Jin Yu [2 ]
Mejias, Christopher [3 ]
Schnieders, Michael J. [4 ,5 ]
Ponderc, Jay W. [3 ]
Ren, Pengyu [1 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Washington Univ, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
[3] Washington Univ, Dept Chem, St Louis, MO 63130 USA
[4] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Biochem, Iowa City, IA 52242 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SPACE RANDOM-WALK; ORTHOGONAL SPACE; PROTEIN-LIGAND; ATOMIC MULTIPOLE; PRACTICALLY EFFICIENT; DRUG; SIMULATIONS; DYNAMICS; AFFINITIES; MECHANICS;
D O I
10.1039/c6cp02509a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.
引用
收藏
页码:30261 / 30269
页数:9
相关论文
共 63 条
[11]   Evaluating the accuracy of the quasiharmonic approximation [J].
Chang, CE ;
Chen, W ;
Gilson, MK .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (05) :1017-1028
[12]   Feature Article Basic Ingredients of Free Energy Calculations: A Review [J].
Christ, Clara D. ;
Mark, Alan E. ;
van Gunsteren, Wilfred F. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (08) :1569-1582
[13]   Polarization effects in molecular mechanical force fields [J].
Cieplak, Piotr ;
Dupradeau, Francois-Yves ;
Duan, Yong ;
Wang, Junmei .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (33)
[14]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[15]  
Daniel M. Z., 2011, ANNU REV BIOPHYS, V40, P41
[16]   Calculation of protein-ligand binding affinities [J].
Gilson, Michael K. ;
Zhou, Huan-Xiang .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2007, 36 :21-42
[17]  
Gohlke H, 2002, ANGEW CHEM INT EDIT, V41, P2645
[18]   Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics [J].
Gräter, F ;
Schwarzl, SM ;
Dejaegere, A ;
Fischer, S ;
Smith, JC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (20) :10474-10483
[19]   Standard Binding Free Energies from Computer Simulations: What Is the Best Strategy? [J].
Gumbart, James C. ;
Roux, Benoit ;
Chipot, Christophe .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (01) :794-802
[20]   Standard free energy of releasing a localized water molecule from the binding pockets of proteins: Double-decoupling method [J].
Hamelberg, D ;
McCammon, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (24) :7683-7689