Stable manifolds and predictability of dynamical systems

被引:17
作者
Doerner, R
Hübinger, B
Martienssen, W
Grossmann, S
Thomae, S
机构
[1] Univ Frankfurt, Inst Phys, D-60054 Frankfurt, Germany
[2] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[3] Univ Essen Gesamthsch, Fachbereich 7, D-45117 Essen, Germany
关键词
D O I
10.1016/S0960-0779(98)00233-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The predictability of dissipative dynamical systems varies with their state. The level contours of predictability closely follow the stable manifolds of the most unstable sets of nonwandering points. In three-dimensional state spaces a simple model explains some of the geometrical features of the level contours, which is illustrated by numerical data for a driven damped pendulum, where unstable periodic orbits modulate predictability, and for the Lorenz system, where the stable manifold of a fixed point provides the dominant features. The spiral structure of the latter is given in terms of Bessel functions. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1759 / 1782
页数:24
相关论文
共 28 条
[1]  
Abarbanel HD., 1991, J NONLINEAR SCI, V1, P175
[2]   RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :325-359
[3]   RECYCLING OF STRANGE SETS .2. APPLICATIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :361-386
[4]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[5]   SCALING OF PERIODIC-ORBITS IN 2-DIMENSIONAL CHAOTIC SYSTEMS [J].
AUERBACH, D .
PHYSICAL REVIEW A, 1990, 41 (12) :6692-6701
[6]   SCALING STRUCTURE OF STRANGE ATTRACTORS [J].
AUERBACH, D ;
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 37 (06) :2234-2236
[7]  
BIRKHOFF GD, 1927, AM MATH SOC COLL PUB, V9
[8]   INVARIANT MEASUREMENT OF STRANGE SETS IN TERMS OF CYCLES [J].
CVITANOVIC, P .
PHYSICAL REVIEW LETTERS, 1988, 61 (24) :2729-2732
[9]   Predictability Portraits for Chaotic Motions [J].
Doerner, R. ;
Huebinger, B. ;
Martienssen, W. ;
Grossmann, S. ;
Thomae, S. .
CHAOS SOLITONS & FRACTALS, 1991, 1 (06) :553-571
[10]  
ECKHARDT B, 1991, LECT NOTES INT SCH P