Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

被引:80
作者
Cao, Hechun [1 ,2 ]
Zhang, Zhiling [1 ,2 ]
Wu, Xuwen [1 ,2 ]
Miao, Xiaoling [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
关键词
OIL; EMISSIONS;
D O I
10.1155/2013/930686
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90 degrees C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150 degrees C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120 degrees C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Continuous-flow preparation of biodiesel using microwave heating [J].
Barnard, T. Michael ;
Leadbeater, Nicholas E. ;
Boucher, Matthew B. ;
Stencel, Lauren M. ;
Wilhite, Benjamin A. .
ENERGY & FUELS, 2007, 21 (03) :1777-1781
[2]   Livestock waste-to-bioenergy generation opportunities [J].
Cantrell, Keri B. ;
Ducey, Thomas ;
Ro, Kyoung S. ;
Hunt, Patrick G. .
BIORESOURCE TECHNOLOGY, 2008, 99 (17) :7941-7953
[3]   Biodiesel from microalgae beats bioethanol [J].
Chisti, Yusuf .
TRENDS IN BIOTECHNOLOGY, 2008, 26 (03) :126-131
[4]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306
[5]   Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil [J].
Dorado, MP ;
Ballesteros, E ;
Arnal, JM ;
Gómez, J ;
López, FJ .
FUEL, 2003, 82 (11) :1311-1315
[6]   Variables affecting the in situ transesterification of microalgae lipids [J].
Ehimen, E. A. ;
Sun, Z. F. ;
Carrington, C. G. .
FUEL, 2010, 89 (03) :677-684
[7]   TRANSESTERIFICATION KINETICS OF SOYBEAN OIL [J].
FREEDMAN, B ;
BUTTERFIELD, RO ;
PRYDE, EH .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1986, 63 (10) :1375-1380
[8]   VARIABLES AFFECTING THE YIELDS OF FATTY ESTERS FROM TRANSESTERIFIED VEGETABLE-OILS [J].
FREEDMAN, B ;
PRYDE, EH ;
MOUNTS, TL .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1984, 61 (10) :1638-1643
[9]   Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel [J].
Georgogianni, K. G. ;
Kontominas, M. G. ;
Pomonis, P. J. ;
Avlonitis, D. ;
Gergis, V. .
FUEL PROCESSING TECHNOLOGY, 2008, 89 (05) :503-509
[10]   Life-Cycle Assessment of Biodiesel Production from Microalgae [J].
Lardon, Laurent ;
Helias, Arnaud ;
Sialve, Bruno ;
Stayer, Jean-Philippe ;
Bernard, Olivier .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (17) :6475-6481