A Gaussian approximation scheme for computation of option prices in stochastic volatility models

被引:9
作者
Cheng, Ai-ru [1 ]
Gallant, A. Ronald [2 ]
Ji, Chuanshu [3 ]
Lee, Beom S. [4 ]
机构
[1] Univ Calif Santa Cruz, Dept Econ, Santa Cruz, CA 95064 USA
[2] Duke Univ, Fuqua Sch Business, Durham, NC 27708 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[4] George Mason Univ, Dept Stat, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
Central limit theorem; Option pricing; Stochastic volatility; Foreign exchange; Markov chain Monte Carlo;
D O I
10.1016/j.jeconom.2008.07.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider European options on a price process that follows the log-linear stochastic volatility model. Two stochastic integrals in the option pricing formula are costly to compute. We derive a central limit theorem to approximate them. At parameter settings appropriate to foreign exchange data our formulas improve computation speed by a factor of 1000 over brute force Monte Carlo making MCMC statistical methods practicable. We provide estimates of model parameters from daily data on the Swiss Franc to Euro and Japanese Yen to Euro over the period 1999-2002. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 58
页数:15
相关论文
共 47 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]   Maximum likelihood estimation of stochastic volatility models [J].
Ait-Sahalia, Yacine ;
Kimmel, Robert .
JOURNAL OF FINANCIAL ECONOMICS, 2007, 83 (02) :413-452
[3]   Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options [J].
Bates, DS .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (01) :69-107
[4]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[5]  
BRADLEY RC, 1986, DEPENDENCE PROBABILI, P165
[6]   A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation [J].
Chernov, M ;
Ghysels, E .
JOURNAL OF FINANCIAL ECONOMICS, 2000, 56 (03) :407-458
[7]   Alternative models for stock price dynamics [J].
Chernov, M ;
Gallant, AR ;
Ghysels, E ;
Tauchen, G .
JOURNAL OF ECONOMETRICS, 2003, 116 (1-2) :225-257
[8]   Markov chain Monte Carlo methods for stochastic volatility models [J].
Chib, S ;
Nardari, F ;
Shephard, N .
JOURNAL OF ECONOMETRICS, 2002, 108 (02) :281-316
[9]  
Chong B.-S., 2003, REV QUANTITATIVE FIN, V21, P5
[10]   SUBORDINATED STOCHASTIC-PROCESS MODEL WITH FINITE VARIANCE FOR SPECULATIVE PRICES [J].
CLARK, PK .
ECONOMETRICA, 1973, 41 (01) :135-155