A Gaussian approximation scheme for computation of option prices in stochastic volatility models

被引:9
作者
Cheng, Ai-ru [1 ]
Gallant, A. Ronald [2 ]
Ji, Chuanshu [3 ]
Lee, Beom S. [4 ]
机构
[1] Univ Calif Santa Cruz, Dept Econ, Santa Cruz, CA 95064 USA
[2] Duke Univ, Fuqua Sch Business, Durham, NC 27708 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[4] George Mason Univ, Dept Stat, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
Central limit theorem; Option pricing; Stochastic volatility; Foreign exchange; Markov chain Monte Carlo;
D O I
10.1016/j.jeconom.2008.07.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider European options on a price process that follows the log-linear stochastic volatility model. Two stochastic integrals in the option pricing formula are costly to compute. We derive a central limit theorem to approximate them. At parameter settings appropriate to foreign exchange data our formulas improve computation speed by a factor of 1000 over brute force Monte Carlo making MCMC statistical methods practicable. We provide estimates of model parameters from daily data on the Swiss Franc to Euro and Japanese Yen to Euro over the period 1999-2002. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 58
页数:15
相关论文
共 47 条
[41]  
Renault E., 1997, ADV EC ECONOMETRICS, V28, P223
[42]   Contingent claims and market completeness in a stochastic volatility model [J].
Romano, M ;
Touzi, N .
MATHEMATICAL FINANCE, 1997, 7 (04) :399-412
[44]   THE PRICE VARIABILITY-VOLUME RELATIONSHIP ON SPECULATIVE MARKETS [J].
TAUCHEN, GE ;
PITTS, M .
ECONOMETRICA, 1983, 51 (02) :485-505
[45]  
Taylor J. S., 1982, TIME SERIES ANAL THE, V1, P203
[46]  
Yu J., 2002, APPL FINANCIAL EC, V12, P193, DOI DOI 10.1080/09603100110090118
[47]  
[No title captured]