Inhibition of Monocarboxylate Transporter 2 Induces Senescence-Associated Mitochondrial Dysfunction and Suppresses Progression of Colorectal Malignancies In Vivo

被引:24
作者
Lee, Inkyoung [2 ]
Lee, Sook-Ja [2 ]
Kang, Won Ki [1 ]
Park, Chaehwa [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Med, Seoul 135710, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Biomed Res Inst, Seoul 135710, South Korea
基金
新加坡国家研究基金会;
关键词
TERMINAL PROLIFERATION ARREST; TUMOR-CELLS; OXIDATIVE STRESS; DNA-DAMAGE; EXPRESSION; CONTRIBUTES; CARCINOMAS; OXIDANTS; FAMILY; P53;
D O I
10.1158/1535-7163.MCT-12-0488
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Senescence, an inherent tumor suppressive mechanism, is a critical determinant for chemotherapy. In the present study, we show that the monocarboxylate transporter 2 (MCT2) protein was tumor-selectively expressed in human colorectal malignancies and knockdown of MCT2 induces mitochondrial dysfunction, cell-cycle arrest, and senescence without additional cellular stress in colorectal cancer cell lines. Moreover, the reactive oxygen species (ROS) scavenger, N-acetylcysteine, blocked MCT2 knockdown-induced growth arrest and cellular senescence, indicating a pivotal role of ROS in this pathway. Dramatic induction of mitochondrial superoxide generation and decrease in ATP production was observed, indicating that mitochondrial dysfunction is the major mechanism underlying MCT2 knockdown-induced ROS generation. Senescence-associated DNA damage was also evident from the increase in promyelocytic leukemia bodies, gamma H2AX foci, and SAHF. Conversely, overexpression of MCT2 prevented doxorubicin-induced ROS accumulation (P = 0.0002) and cell growth inhibition (P = 0.001). MCT2 knockdown suppressed KRAS mutant colorectal tumor growth in vivo. In addition, MCT2knockdown and cytostatic drug combination further enhanced the antitumor effect. These findings support the use of MCT2 as a promising target for inhibition of colorectal cancer. Mol Cancer Ther; 11(11); 2342-51. (C) 2012 AACR.
引用
收藏
页码:2342 / 2351
页数:10
相关论文
共 30 条
[1]   Requirement for p27KIP1 in retinoblastoma protein-mediated senescence [J].
Alexander, K ;
Hinds, PW .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (11) :3616-3631
[2]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[3]   The free radical theory of aging matures [J].
Beckman, KB ;
Ames, BN .
PHYSIOLOGICAL REVIEWS, 1998, 78 (02) :547-581
[4]  
Chang BD, 1999, CANCER RES, V59, P3761
[5]   Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs [J].
Chang, BD ;
Xuan, YZ ;
Broude, EV ;
Zhu, HM ;
Schott, B ;
Fang, J ;
Roninson, IB .
ONCOGENE, 1999, 18 (34) :4808-4818
[6]   OXIDATIVE DNA-DAMAGE AND SENESCENCE OF HUMAN-DIPLOID FIBROBLAST CELLS [J].
CHEN, Q ;
FISCHER, A ;
REAGAN, JD ;
YAN, LJ ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4337-4341
[7]  
Christine KG, 1995, J BIOL CHEM, V270, P1843
[8]   Oncogenic alterations of metabolism [J].
Dang, CV ;
Semenza, GL .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (02) :68-72
[9]  
Dewhirst MW, 2003, ADV EXP MED BIOL, V510, P51
[10]   Oxidants, oxidative stress and the biology of ageing [J].
Finkel, T ;
Holbrook, NJ .
NATURE, 2000, 408 (6809) :239-247