Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum

被引:224
作者
Sagi, M
Davydov, O
Orazova, S
Yesbergenova, Z
Ophir, R
Stratmann, JW
Fluhr, R [1 ]
机构
[1] Ben Gurion Univ Negev, Inst Appl Res, IL-84105 Beer Sheva, Israel
[2] Weizmann Inst Sci, Dept Plant Sci, IL-76100 Rehovot, Israel
[3] Weizmann Inst Sci, Dept Biol Serv, Bioinformat Unit, IL-76100 Rehovot, Israel
[4] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA
关键词
D O I
10.1105/tpc.019398
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plant respiratory burst oxidase homologs (Rboh) are homologs of the human neutrophil pathogen-related gp91(phox). Antisense technology was employed to ascertain the biological function of Lycopersicon esculentum (tomato) Rboh. Lines with diminished Rboh activity showed a reduced level of reactive oxygen species (ROS) in the leaf, implying a role for Rboh in establishing the cellular redox milieu. Surprisingly, the antisense plants acquired a highly branched phenotype, switched from indeterminate to determinate growth habit, and had fasciated reproductive organs. Wound-induced systemic expression of proteinase inhibitor II was compromised in the antisense lines, indicating that ROS intermediates supplied by Rboh are required for this wound response. Extending these observations by transcriptome analysis revealed ectopic leaf expression of homeotic MADS box genes that are normally expressed only in reproductive organs. In addition, both Rboh-dependent and -independent wound-induced gene induction was detected as well as transcript changes related to redox maintenance. The results provide novel insights into how the steady state cellular level of ROS is controlled and portrays the role of Rboh as a signal transducer of stress and developmental responses.
引用
收藏
页码:616 / 628
页数:13
相关论文
共 47 条
[1]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[2]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[3]   ACTIVE OXYGEN IN PLANT PATHOGENESIS [J].
BAKER, CJ ;
ORLANDI, EW .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1995, 33 :299-321
[4]   A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes [J].
Bánfi, B ;
Molnár, G ;
Maturana, A ;
Steger, K ;
Hegedûs, B ;
Demaurex, N ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) :37594-37601
[5]  
BOKOCH GM, 1994, J BIOL CHEM, V269, P31674
[6]  
Brandstadter J, 1996, MOL GEN GENET, V252, P146, DOI 10.1007/BF02173214
[7]   Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J].
Cheong, YH ;
Chang, HS ;
Gupta, R ;
Wang, X ;
Zhu, T ;
Luan, S .
PLANT PHYSIOLOGY, 2002, 129 (02) :661-677
[8]   Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in fucus rhizoid cells [J].
Coelho, SM ;
Taylor, AR ;
Ryan, KP ;
Sousa-Pinto, I ;
Brown, MT ;
Brownlee, C .
PLANT CELL, 2002, 14 (10) :2369-2381
[9]   THE EFFECT OF THE INHIBITOR DIPHENYLENE IODONIUM ON THE SUPEROXIDE-GENERATING SYSTEM OF NEUTROPHILS - SPECIFIC LABELING OF A COMPONENT POLYPEPTIDE OF THE OXIDASE [J].
CROSS, AR ;
JONES, OTG .
BIOCHEMICAL JOURNAL, 1986, 237 (01) :111-116
[10]   Linking chromatin function with metabolic networks:: Sir2 family of NAD+-dependent deacetylases [J].
Denu, JM .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (01) :41-48