Machine learning of molecular electronic properties in chemical compound space

被引:515
作者
Montavon, Gregoire [1 ]
Rupp, Matthias [2 ]
Gobre, Vivekanand [3 ]
Vazquez-Mayagoitia, Alvaro [4 ]
Hansen, Katja [3 ]
Tkatchenko, Alexandre [3 ,5 ]
Mueller, Klaus-Robert [1 ,6 ]
von Lilienfeld, O. Anatole [4 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[2] ETH, Inst Pharmaceut Sci, CH-8093 Zurich, Switzerland
[3] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[4] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL USA
[5] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea
[6] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
基金
新加坡国家研究基金会;
关键词
POTENTIAL-ENERGY SURFACES; INTERMEDIATE NEGLECT; VIRTUAL EXPLORATION; UNIVERSE; APPROXIMATION; DESCRIPTORS; SMILES; DEEP; QSAR;
D O I
10.1088/1367-2630/15/9/095003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a 'quantum machine' is similar, and sometimes superior, to modern quantum-chemical methods-at negligible computational cost.
引用
收藏
页数:16
相关论文
共 64 条
[61]  
Zerner M.C., 1991, Semiempirical Molecular Orbital Methods
[62]  
Zerner MichaelC., 1991, REV COMPUTATIONAL CH, V2, P313, DOI DOI 10.1002/9780470125793
[63]   Tests of second-generation and third-generation density functionals for thermochemical kinetics [J].
Zhao, Y ;
Pu, JZ ;
Lynch, BJ ;
Truhlar, DG .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (04) :673-676
[64]  
Zheng X, 2004, CHEM PHYS LETT, V390, P186, DOI 10.1016/j.cplett 2004.04.020