Temporal Percolation of the Susceptible Network in an Epidemic Spreading

被引:24
作者
Daniel Valdez, Lucas [1 ]
Alejandro Macri, Pablo [1 ]
Adriana Braunstein, Lidia [1 ,2 ]
机构
[1] Univ Nacl Mar del Plata, Fac Ciencias Exactas & Nat, Dept Fis, Inst Invest Fis Mar del Plata, Mar Del Plata, Buenos Aires, Argentina
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
来源
PLOS ONE | 2012年 / 7卷 / 09期
关键词
SIR DYNAMICS;
D O I
10.1371/journal.pone.0044188
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity Phi(S)(t), namely, the probability that a given neighbor of a node is susceptible at time t, is the control parameter of a node void percolation process involving those nodes on the network not-reached by the disease. We show that there exists a critical time t(c) above which the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be implemented before this critical time t(c). Our theoretical results are confirmed by extensive simulations of the SIR process.
引用
收藏
页数:5
相关论文
共 22 条
[1]  
ANDERSON R M, 1991
[2]   Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic [J].
Bajardi, Paolo ;
Poletto, Chiara ;
Ramasco, Jose J. ;
Tizzoni, Michele ;
Colizza, Vittoria ;
Vespignani, Alessandro .
PLOS ONE, 2011, 6 (01)
[3]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[4]   Optimal path and minimal spanning trees in random weighted networks [J].
Braunstein, Lidia A. ;
Wu, Zhenhua ;
Chen, Yiping ;
Buldyrev, Sergey V. ;
Kalisky, Tomer ;
Sreenivasan, Sameet ;
Cohen, Reuven ;
Lopez, Eduardo ;
Havlin, Shlomo ;
Stanley, H. Eugene .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (07) :2215-2255
[5]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628
[6]   Predictability and epidemic pathways in global outbreaks of infectious diseases:: the SARS case study [J].
Colizza, Vittoria ;
Barrat, Alain ;
Barthelemy, Marc ;
Vespignani, Alessandro .
BMC MEDICINE, 2007, 5 (1)
[7]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[8]   ON THE CRITICAL-BEHAVIOR OF THE GENERAL EPIDEMIC PROCESS AND DYNAMICAL PERCOLATION [J].
GRASSBERGER, P .
MATHEMATICAL BIOSCIENCES, 1983, 63 (02) :157-172
[9]   Second look at the spread of epidemics on networks [J].
Kenah, Eben ;
Robins, James M. .
PHYSICAL REVIEW E, 2007, 76 (03)
[10]   Effects of epidemic threshold definition on disease spread statistics [J].
Lagorio, C. ;
Migueles, M. V. ;
Braunstein, L. A. ;
Lopez, E. ;
Macri, P. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (05) :755-763