Resilience of the Internet to random breakdowns

被引:1743
作者
Cohen, R [1 ]
Erez, K
ben-Avraham, D
Havlin, S
机构
[1] Bar Ilan Univ, Minerva Ctr, IL-52900 Ramat Gan, Israel
[2] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[3] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA
[4] Clarkson Univ, Ctr Stat Phys, Potsdam, NY 13699 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.85.4626
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A common property of many large networks, including the Internet, is that the connectivity of the various nodes follows a scale-free power-law distribution, P(k) = ck(-alpha). We study the stability of such networks with respect to crashes, such as random removal of sites; Our approach, based on percolation theory, leads to a general condition for the critical fraction of nodes, p(c), that needs to be removed before the network disintegrates. We show analytically and numerically that for alpha less than or equal to 3 the transition never takes place, unless the network is finite. In the special case of the physical structure of the Internet (alpha approximate to 2.5), we find that it is impressively robust, with p(c) > 0.99.
引用
收藏
页码:4626 / 4628
页数:3
相关论文
共 15 条
  • [1] Internet -: Diameter of the World-Wide Web
    Albert, R
    Jeong, H
    Barabási, AL
    [J]. NATURE, 1999, 401 (6749) : 130 - 131
  • [2] Error and attack tolerance of complex networks
    Albert, R
    Jeong, H
    Barabási, AL
    [J]. NATURE, 2000, 406 (6794) : 378 - 382
  • [3] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [4] BOLLOBAS B, 1985, RANDOM GRAPHS, P123
  • [5] CLAFFY K, 1999, NATURE WEB MATTERS
  • [6] PERCOLATION THEORY
    ESSAM, JW
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1980, 43 (07) : 833 - 912
  • [7] Faloutsos M, 1999, COMP COMM R, V29, P251, DOI 10.1145/316194.316229
  • [8] Internet - Growth dynamics of the World-Wide Web
    Huberman, BA
    Adamic, LA
    [J]. NATURE, 1999, 401 (6749) : 131 - 131
  • [9] KRAPIVSKY PL, 2000, CONDMAT0005139
  • [10] A CRITICAL-POINT FOR RANDOM GRAPHS WITH A GIVEN DEGREE SEQUENCE
    MOLLOY, M
    REED, B
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (2-3) : 161 - 179