Passivity gains and the "secant condition" for stability

被引:44
作者
Sontag, ED [1 ]
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
关键词
secant condition; passive systems; negative feedback; stability;
D O I
10.1016/j.sysconle.2005.06.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A generalization of the classical secant condition for the stability of cascades of scalar linear systems is provided for passive systems. The key is the introduction of a quantity that combines gain and phase information for each system in the cascade. For linear one-dimensional systems, the known result is recovered exactly. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 14 条
[1]  
ARCAK M, UNPUB DIAGONAL STABI
[2]   Stabilization of positive linear systems [J].
De Leenheer, P ;
Aeyels, D .
SYSTEMS & CONTROL LETTERS, 2001, 44 (04) :259-271
[3]   Meagre functions and asymptotic behaviour of dynamical systems [J].
Desch, W ;
Logemann, H ;
Ryan, EP ;
Sontag, ED .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (08) :1087-1109
[4]  
FARINA L, 2000, PUR AP M-WI, P3
[5]  
Khalil HK., 1992, NONLINEAR SYSTEMS
[6]  
Mallet-Paret J., 1990, J. Dyn. Differ. Equ, V2, P367, DOI DOI 10.1007/BF01054041
[7]   System analysis via integral quadratic constraints [J].
Megretski, A ;
Rantzer, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (06) :819-830
[8]   CAUSALITY IN HILBERT SPACE [J].
SAEKS, R .
SIAM REVIEW, 1970, 12 (03) :357-&
[9]   Asymptotic amplitudes and Cauchy gains: a small-gain principle and an application to inhibitory biological feedback [J].
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 2002, 47 (02) :167-179
[10]  
SONTAG ED, 1998, MATH THEORY DETERMIN